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ABSTRACT
We show that in the core model every uniform ultrafilter is regular. In
addition, we prove that the existence of a nonregular uniform ultrafilter on a
singular cardinal implies the existence of an inner model with a measurable
cardinal.

§0. Introduction

Regular ultrafilters were introduced because they yield ultrapowers of
maximal cardinality. Their basic properties including refinements of the
notation of regularity can be found in [3]. Chang and Keisler also formulated
various questions concerning the existence of nonregular ultrafilters (see
Conjectures 4, 14, 15, 16) in [3]. In this paper we shall show that one cannot
prove the existence of a nonregular uniform ultrafilter on an infinite set in
ZFC + GCH (if ZF is consistent).

Various partial results in this direction have been known before. Prikry
showed in [15] that assuming V' = L every uniform ultrafilter on , is regular.
His proof actually showed that assuming V' = L every uniform ultrafilteron x*
is (x, x *)-regular. Chang analyzed how one could improve this result (see [2]).
This was used by Jensen in [8] to show that in L every (y™*, x)-regular ultrafilter
is (y, k)-regular for all regular k. Especially, in L every uniform ultrafilter on
w,, n <, is regular.

Later, Benda found a simpler proof of Prikry’s result. He showed that a weak
version of the Kurepa hypothesis for x* implies that every uniform ultrafilter
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on k™ is (k, k*)-regular (see [1]). This proof was used by Ketonen to show that
=10* is sufficient to get the same conclusion (see [12]). Using the core model
Jensen weakened the assumption to 1L (see [7]). Here “71L*” is an abbrevia-
tion of the statement “there exists no inner mode! with a measurable cardinal”.
Moreover, Jensen proved a new result about weakly normal ultrafilters. Using
a theorem of Kanamori and Ketonen (see [10]) this result has the following
consequence concerning regularity:

(*) Assume 1L*, kregular and 2¢ = k. Then every uniform ultrafilter on x is
(w, A)-regular for all A <x.

For uniform ultrafilters on singular cardinals no result in this direction
seems to have been known. In this paper we shall show (see Theorem 4.1):

(A) Assume 1L#, Let k> w be a singular cardinal. Then every uniform
ultrafilter on « is regular.

For regular cardinals we need a stronger assumption (see Theorem 4.3):

(B) Assume 1L*. Let ¥ > w be regular and assume (x*)¥ = k*. Then every
uniform ultrafilter on « is regular.

Especially, we get that in K every uniform ultrafilter on an infinite set is
regular. Finally, we use our method to eliminate the assumption 2¥ = k in (*)
(see Theorem 4.5).

Of course, it is a natural question whether one can remove the assump-
tion (k%)X =k* in (B). This problem remains open even if we strengthen
a1 L*to 10*.

In the other direction many results are known. Prikry showed that one can
have a uniform ultrafilter on a singular cardinal x which is even A-indecompos-
able for all w < 4 <k, if one assumes the consistency of a measurable cardinal
(see [14]). This shows that the assumption 1L* is necessary in (A). Using a
huge cardinal Magidor constructed a model in which there is a uniform
nonregular ultrafilter on w, (see [13]). Very recently, Foreman, Magidor and
Shelah obtained the analogous result for w,.

Finally, we should mention a result of Prikry and Silver. They showed that
every uniform uitrafilter on a regular x is A-decomposable if there is a
nonreflecting stationary subset of x consisting only of ordinals of cofinality
A (see [16]). The proof of this theorem given in [11] was a key to the results in
this paper.

The paper is organized as follows. In §1 we prove some preliminary facts
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about ultrafilters. Moreover, we prove a new result which introduces some of
the ideas used later. In §2 we define the crucial combinatorial principles. They
are all strengthenings of [],.. We also reduce these principles to some technical
statements about “Z,-collapsing” structures. The second combinatorial prin-
ciple was formulated by Jensen after he saw the original version of our proof.
There we used a weaker principle. In §3 we prove these principles in the core
model K. The main part of the method used in that section is known (e.g. see
[17]). §4 contains the main results of this paper which were stated above.

§1. Ultrafilters

In this section we introduce some basic definitions and prove simple lemmas
about ultrafilters.

DEerFINITION. Let Ube an ultrafilter. Then U is uniform iff all members of U
have the same cardinality.

It suffices to investigate uniform ultrafilters, for any ultrafilter U determines
a uniform ultrafilter U such that U and U have the same structural properties.
For our purposes it is also sufficient to consider only ultrafilters on cardinals.

DEFINITION. Let Ube an ultrafilter on x and let 4, 7 be cardinals. Uis (4, 7)-
regular iff there is a sequence (X, | a<1), X,€U, such that N e X, = & for
all BC 1, |B| = 4. Uis regular iff U is (w, k)-regular.

It is easy to see that for an ultrafilter U on « the following two properties are
equivalent.
(@) Uis (4, 1)-regular.
(b) There is a sequence (u, ] v<k)suchthatuy, C1, |4, | <4,and Va<1
{v|a€u,}EU.
A sequence as in (b) will be called a (4, t)-covering of U.

LEMMA 1.1. Let U be an ultrafilter on k. Let t be a singular cardinal, A
regular and let U be (4, p)-regular for all p < t. Then U is (A, t)-regular.

Proor. Let T =cf(t). Let (1; |5 < 7) be a normal sequence of cardinals
such that 7, = 0 and 7 = sup{1; | 0 <t}. Let (uf | v <k) be a (4, tp)-covering
of U and (u, | vy <kK) be a (4, t)-covering of U. For v <k set

u,=U{ul+' [6€n,).
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Since A is regular we have |u,] <A. Now let a <7. Choose J such that
T; S a<T5,,. Then

(v<kl|e€u}2{v<k|d€n}n {v<k|a€ul*}EU.
So (u, | v <k) is a (4, 7)-covering of U. qed

DErFINITION. Let U be an ultrafilter and f: X—A4, XE€U. Then fis a
A-decomposition of U iff forall a <4 {vEX | flv) Z 2} EU.

For singular A this notation is slightly misleading but it is good enough for
our purposes.

The following translation of regularity is useful for us. We do not state the
most general version. If f, g: X — On then f < g means that f{x) = g(x) for all
xEX.

LEMMA 1.2. Let U be an ultrafilter on k and let © > w be regular. Then the
following properties are equivalent:
(@) Uis (w, 1)-regular.
(b) There are B C On, otp(B) = 1, B closed in sup B, X € U and A-decompo-
sitions f: X ~A for AEB such that f, < f, forall A, uEB, A = .

PrOOF. (a)—(b) Let (u, |y <x) be a (w, 7)-covering of U. Set B =
7 — {0}. For A € B define f;: x — 4 by f;(y) = sup(u, N 1). These satisfy (b).
(b)— (a) Let B, X, f, be given. For n €B let

X,={(yEX|VSEB —(n+ 1) () Z 1}
By assumption we have that

X,={yEX| LN Zn)

where u = min(B —(n + 1)). So X, €U, since f, is a u-decomposition of
U. We show that (X, | NEB) gives the (w, 7)-regularity of U. So let
(n(n)l n<w) be a monotone sequence such that n(n)EB and let n =
sup{n(n) | n <®}. Then n €B since B is closed in sup B and cf(z) > w. We
have to show that M, ., X,, = . Assume that this is not the case. So let
a€MN, <oy Xy Then fo(a) Z n(n) for all n <w, so f,(a) = n. But this con-
tradicts the property f,: X — 1. ged

If U is an ultrafilter on x and f: x — A, then let

HUY={XCi|f " XeEU).
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Clearly, f*(U) is an ultrafilter on A. Note that U is (u, p)-regular, if f*(U) is
(u, p)-regular. Kanamori showed in [10] that for any uniform nonregular
ultrafilter on a regular ¥ > w there is some f: k —k such that f*(U)2 ¢,
where 4. is the filter generated by the club subsets of k. We also need a
version of Kanamori’s result for ultrafilters on singular cardinals. If U is an
ultrafilter, f: X—On, g:Y—0On, X,YEU, then f<yg denotes that
(xEXNY|flx)<gx)}EU.

LEMMA 1.3. Let k be a singular cardinal. Let (k; |5 <p), p<k, be a
sequence of limit cardinals such that:
(i) x> ;> sup{x; | £ <)
(ii) (cf(x;) | d <p) is weakly monotone.
(iii) x = sup{cfix;) |6 <p}.
Let U be a uniform ultrafilter on i which is not regular. Then there is some
f:x— K such that

fHU)2{C Ck|Vd<pC NKsclub in ;).

PROOF. Let F be the set of all f: k¥ — k which satisfy
(1) fis weakly monotone,
(2) 36 <p V=0 f"x, unbounded in x,.

It suffices to show

(*) F has a least element mod U.

To see this, assume that fis such a function. Thenid ! xis the least element of
F mod f*(U). Now let C C k such that Vd <pC Nk; is club in x;. Define
g:k—K by gl@)=sup(CNa). Then g€F and g=idlx. So A=
{a<k|gl@)=a}Ef*U). But ACCUB, where B=(minC + 1)U
{5 |6 <p}. So CE f*(U), since |B| < and f*(U) is uniform.

So we have to prove (). Assume that (x) is false. We define a sequence
(f.] @ <x) such that f,€ F and

@ fin<vh,

) =fforalla<p <k,

(c) f, satisfies the condition (2) for the least § < p such that cf(x;) > a.

The definition of this sequence is done by recursion. Successor steps and the
initial case are obvious. If A <k is a limit ordinal we just set

£i@)=min{£,(7)|a<1}.
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Finally, we then set X, = {y <k |f,,,+ 1)< £.(7)). Then (X, | a < k) shows
that U is regular. This contradicts our assumption. qed

The proof of the next result is a good introduction to the method used in this
paper to get regularity properties of ultrafilters. But first we need a definition.

DEFINITION. Let k¥ > w be regular. Then O0; denotes the following prin-
ciple:

There is a sequence (C, | y <k, lim(y)) such that:

(@) C,Cyisclosedin y,

(b) cfiy)>w—sup C, =7,

() A€C,—-C;=C, N4,

(d) there is no unbounded C C xsuchthat CNA=C,forall A€C.

So for k = A* O; is a weaker version of the more familiar principle [J,. We
hope that the different indices are not confusing. Clearly, O0; cannot hold if x is
weakly compact. In [9] Jensen has shown that [0, holds in L for all regular
& > w which are not weakly compact. Note that [, is provable in ZFC.

THEOREM 1.4. Let k > w be regular and assume that O, holds. Then every
uniform ultrafilter U on k is (w, t)-regular for every 1 <k.

Proofr. For k = w, this is a classical result. So let k > w, and let U be
given. It suffices to prove the claim for all regular 7 such that w <1 <k. So let
such a 7 be given and let (C, |y <K, lim(y)) be a O; -sequence. Set D =
{y<k | sup C,=y}. We first define a sequence (g, | a<k) such that
2.:D N (a+ 1)~ « and the following three properties hold for all « < k:

(i) g, is regressive.
(ii) Lety,A€ED,y <A =ea,and y&C;. Then

G, ~&MN(C—gA)=0.

(iii) Let y, AED N(a+ 1) and y €C;. Then g,(y) = g.(4).

The definition is done by recursion. Set g, = & and g,,, = g,. Nowleta <k
be a limit ordinal. If sup C, <a (hence cf(a) = w) choose a monotone w-
sequence H such that supH =a and sup C,<min H. If sup C, =a, set
H=@. Now first let yE(D N a)— C,. Set u =sup((C, U H)N p), so u <7y.
Let p be the successor of u in C, U H. Then set g,(y) = max{g,(y), u}. If
yE(C, U {a}) N D set g,(y) = 0. It is easy to see that g, satisfies (i)—(iii).

For y €D we now define f,: x —y —y by f,(a) = g.(»). By (iii) we get

(1) Let y, A€ED, yEC,. Then f(a) = fi(e) forall 1 = a<k.

We now show
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(2) Set 4 ={y€ED |f, is not a y-decomposition of U}. Then A is not
stationary in x.

PrOOF. By definition of A there is a regressive function % : 4 — k such that
X,={a€k—y|fle)Sh(»)})EU fory€ed.

Assume that 4 were stationary. Define g: 4 —« such that g(y)EC, — A(y).
Then by Fodor g is constant on some stationary E C A. But then we have

(») Lety, A€EE, y<A. Then yE€(,.
To see this choose a € X, N X;(EU). Then
EME(C, — .(1) N(C; — g.(4)).

So y € C, follows from (ii). But (*) contradicts the definition of a [J; -sequence.
qed (2)

Now choose some club C C x such that C N4 = and let y be a limit
point of C such that cf(y) = 7. Thensup C, =ysince t>w.Let BC CNC,
be club in y and otp(B) = 7. Set X =x — y and for s EB set f; = f; | X. Then
fi |¢SEB ) satisfies the condition (b) in Lemma 1.2. Hence U is (w, 7)-
regular, qed

§2. O-principles

In this section we introduce the combinatorial principles we need for our
results.
We start with some definitions and notations. Set

L ={s = (v, ay) llim(vs) and q, C J,, where wn =v,}.
For s€ % set
Jo=(J;,a), wherea =a,, wn=v,.

Let h, be the canonical X;-Skolem function of J,. If §, s €& we write f: § =5
for f: J; —¢, J;. The notation f= s denotes that f: §= s for some §. Set

F={(f]|f=sfor some s € #}.

Nowlets€ ¥ and A < v, lim(A). Thensets IA =(A,a NJy), wherea = a,,
wn =A4A.
For f: §=s set
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A(f)=sup(On Nmg(f)) and B(f)=sup{B=v,|f1=id!B)}.

So if f # id, B( f) is the critical point of f.
We now define some special elements of F as follows. Let s€E % and 8 < v,.
Let
X = the Z,-Skolem hull of # in J..

Let f: M= X, where M is transitive. Then there is exactly one § € & such that
M =J,. We also have that f: §=s5. Set f5,,= f.
We now define a sequence (C; | SESL). Solet s€E . For § <y, set

W;=W;=0nnh’%(w X{3d)}).
For n <v, set
(1) = 7,(n) = sup{sup W, | 6 <n).
Then set
L={n=v,|Ya<m@<ym<v)}
Finally we set

C,={y(m)|n€L).

Note that C, is uniformly definable in J;. Clearly, C, C {y <v; I lim(y)}, since
Wj; <35, v,. The next theorem contains the main properties of the sequence
(C,|sEZ).

THEOREM 2.1. Lets€ . Then:

(a) C, Cv,isclosed inv,.

b) A€C,—C,,=AnNC,.

(©) cf(v,)>w—=sup C, =v,.

(d) Let a <vsuch that A( f.s) = Vs. Set

& = min{a = «| & primitive recursively closed}.

Thenotp C, < a.
(e) Letf:5=s. Then f: (J;, C;) 5, (J;, C;) and (J;, C,) is amenable.

ProOOF. (a) is obvious.

(b) Let AEC,. So A =y,(n) for some n€E€I. By basic properties of the
canonical X -Skolem functions we get that Wi = Wj“ for all  <# and
I, =n N I,. So y,(R) = y,,:(A) for all # <n. Hence C;;, =4 N C,.

(c) Setv =v,and W; = W3.Letcf(v) > w. We have to show that sup C, = v.
It suffices to show that I, # & and I, has no maximal element. So let
€I U {0). We are looking for some n €I, such that n>#. Now set
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d =min{é = 7 | sup W; > y(7)}. Then sup W;<v, since |W;| <w and
cf(v) > w. But then by definition § + 1 €1..

(d) Let G:[On]=” —On be the canonical primitive recursive bijection. Set
o = sup G”[a] =“. Then we have

On N mg( fs) € U{W; |6 <o},

hence I, C o/ and otp C, = o'

(e) By the uniform definability of (C, | SE L) we get by (b) that (J,, C,) is
amenable and that f(C;;) = C;, s, for all 4 such that wd <v,. So it suffices to
show that F”C, C C,. Solet A €C;, say A = y,(7), 1 EL,. Set n = f(i). We show
that n €1, and f(1) = A. Set 1 = f(1). Since fis X,-elementary the following
I1;-statement holds in J,:

(1) Véi<nVi€w ({i,d)Edom h,— h(i, d) <A).

But f1 J, ; is an elementary map of J;; into J;,,. Hence

(2) Vp<4 3i3é<n((i,d)Edom hy; and h,,(i, 5) > p).

By (1) we can replace h,); by A, in (2). So n €1, and A = y,(). ged

We now formulate the first crucial combinatorical principle.

DEFINITION. Let k > w be regular. Then [0} denotes the following com-
binatorical principle.
There are (S, | a=k),(C, | VES,), (4, | vES,)and G, : {vES, | a€A,}—
S, for a < x such that the following properties holds:
(EO0) (@) S,Ca*isclosedina™ fora =«x.
(b) S, is unbounded in k.
(c) sup S, <k fora<k.
(d) 4,CkisclubinkforvES,.
(E1) Fora<k,vES,, we have
(a) C, C S, Nvisclosed in v.
(b) AEC,—C,=ANC,.
(©) cf(v)>w—>supC,=v.
(d) otpC, = .
(E2) Letv, T E€S,, v <1. Then there is some # <k such that G,(v) < G, (1)
forall a€(4,NA,)—1:
(b) Let vES,, aE€EA,. Set n = G,(v) and

A=sup{A€C, U (v}|otp(C, N 1) < a}.

Then G, maps C, N 4 order preservingly onto C,,.
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So this principle asserts the existence of a [J.-sequence which projects to
partial [1,-sequences. It may be helpful for the reader to draw a picture.

Later we shall show that 0} holds in X for all regular x > w. We think that it
is convenient to divide the proof of this into two parts. We now present the
first part which can be stated in a general way without mentioning the special
inner model K. For this we introduce the following rather technical definition.
Let & and (C, IsE.V) be as above.

DEFINITION. Let x> be regular. Then (B), denotes the following
principle.
There are S C x* and (s, | vES) such that s, €% and the following pro-
perties hold.
(BO) Let vES, s =s,. Then there is some a > w such that J, F v =a* and
ﬁa,s) =id.
Seta=a,and S,={VES |a=a,}.
(B1) (@) S,C a* is closed for o < k.
(b) S, is unbounded in x*.
(c) sup S, <k fora<k,.
(B2) Let vES,, s=s,, AEC,, f= fosn- Let fi5=s |). and set =
sup{p =, | f(p) =v}. Then nES, and § =35,
(B3) Let vES,, s =5,, f = fius). Assume that mg(f) Nk =a and let f: § =
s,V=f"'"y. Then vES, and § = s,.
(B4) Letv, f, a, ¥, § be as in (B3). Further let 1 €S, N vand f(z) = . Then
t€S,, s, €J;and f(s;) = s..

LEMMA 2.2. Let k> w be regular and assume that (B), holds. Then O}
holds.

ProOF. Let (B), be given by S, S,, 5,. We have to define the different
components of [J; . For a = x we take the same S,. So (EO)a), (b), (c) are
satisfied. We now define the C,’s. So let vES, and s =s5,. Let A€C, and
f=fousiy» f:§=5 | A. Then set

A =sup{p =v,| flp) = v}.
Using this notation we set
C,={AV|i€C,).

We have to show that (E1) is satisfied. So let A €C; and f be as above. By
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(B2) we know that A is the cardinal successor of « in J;. Since f{a) = a we get
that f1 A¥ =id I A", Hence

A=rmg(NHNv="h;@Nv.

Since v is regular in J, it follows that A*? < v. We also get that C, is closed in v
since the sequence (A% | AEC,) is continuous. Now we use the fact that
Jiasy = 1d,. Hence by 2.1(d) otp(C;) = a, since « is primitive recursively closed.
Further we get

sup C, =v,~sup C, =v.

A similar argument yields that cf(v,) = cf{v). We still have to show that
(E1)(b) is satisfied. So let # € C,. Then n = A™ for some A EC;, s = s,. Further
let f= fos2- Then (B2) says that f:5,=s |}.. Set § =s,. By Lemma 2.1
we know that C,;; = C;nAand f”C; = C; N A. But then using fT n =id  nit
is easy to see that A =1® whenever AEC, and 1 = f(1). This implies
that C, N n=C,.

We now define (4, | VES,). So let vES, and set s =5, f, = fu5)- We set

A, = {a<x|xEmgf,, x Nmg f,= q, f, is elementary}.

Obviously, A, is club in k. To define G, we apply (B3). So let vES,, a€A4,,
and set s =s5,, f= fi.,). We then set G,(v)=f~'"v. By (B3) we know that
G,(v)ES,. We have to show that (E2)(a) holds. So let v,TE€S,, v <t and
set s =s,. Since f,, =1id, there is some n <x such that vEmg f,, for
all a€A4,—n. Now let a€4,—1, f=f,., and f(#)=v. Set §=s,,
s’=s,, f=f|J,. Then (B4) implies that f:5=s’. Since xk Nmg f=a,
fta=idta and f,,,=id, it is easy to see that f=f,,, Hence ¥=
G,(v) <G, (7).

Finally we have to show (E2)(b). So let vES,, a€A4,, n =G, (v), s =s,,
§ =8y, = fius- Hence f:5=5. Since fl « = a and otp C; = a we know by
Theorem 2.1(e) that f”C; is an initial segment of C;. Since f'is elementary we
have f{otp C,) = otp C,. So it suffices to show the following statement:

1EC, i=fl)—Av= fim),

Since then by the argument used for (E2)(a) it follows that A = G,(A"),
since AME S, N 5. Now f(h,;1(2)) = h, 1(x) and n = f~'7v. Hence A" = f(A™).
qed

For inaccessible x CI} will not be sufficient for our results. So we state here
some additional information contained in the proof of the last lemma.
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LEMMA 2.3. Let the O -sequence be constructed from (B), as in the proof
above. Then we have:

There are n} : J,—5, J, for vES,, a€A,, v =G, (v), § =s,, s =S5, with the
properties:

) mta=1idla, nl(a) =K.

(2) Lett€S, Nv,1=7.2),s'=s,. Thenn:=mn't J,.

Proor. For vES,, a€A4,, s =s, we set n) = f,). The properties (1), (2)
were implicitly proved above. qed

We now introduce for arbitrary cardinals x > w a similar principle O} *. We
shall only use this principle for singular .

DEFINITION. Let ¥ > w be a cardinal. Then OO} * denotes the following
principle:
There are (S, |a <k), (C, | VES,), (4, | VES,),
G,: {vES, |aE4,}— S, with the properties:
(EO)(a) (b) as earlier.
() a<k—sup S,<a”.
(d) Let vE€S,. Then there is some p <xsuchthat 4, NA* isclubini*
forallp =1 <k.
(E1) and (E2) (a) as earlier.
(E2)(b) Let vES,, a€A,. Set n = G,(v) and

A =sup{AEC, U {v}|otp(C, N 1) < a}.

Then G, maps C, N A order preservingly onto a final segment of C,.
The weakening of (E2)(b) is motivated by the fact that we can only prove this
version in suitable inner models. We now formulate an analogue to (B),.

DEFINITION. Let k¥ > w be a cardinal. Then (B), denotes the following
principle:
There are S Ck™ and (s, |v €.S5) such that s,€% and the following
properties hold:
(BO) Let vES and s =s,. Then there is o> w such that J,k v=a* and
Jiasy=1d;. Moreover, if a=x, then J; F “H, is a set and VA <k
28 =17
Seta=a,and S,= (vES |a=a,}.
(B1)a) S,Ca*isclosed in o *.
(b) S, is unbounded in x*.
(c) supS,<a* fora<k.
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(B2) There is (£, | vES) with the properties:
LetvES, s =s,, a=a, Then
@ & =y cfy)>w—¢ <v,.
(b) Let A€EC,, A> &, f = frasinys f: §=5 | 4. Set

n=sup{&=v | (&) =v).

Then n€S,, § =s, and f(§) =¢,.
(B3) There is (4, | vES,), d, <k, such that the following property holds:
Let vES,, s =5,, 0, Sa <k, a no cardinal, f= f,, f1 § =5, a=
B(f). Then a <v;and § = s, for the unique 7such that J; F 1 =a*.In
addition, f(&,) < &,. Moreover we have that J, =< 4, for n, v as in (B2)
with a = k.
(B4) Let v, f, o, sbe as in (B3). Assume that 1 €S, N vand t Emg( ). Then
e € mg( f)

LeMMA 2.4. Let x> w be a cardinal and assume that (B), holds. Then
O * holds.

Proor. Let(B), begivenby S, S,,s,, &, 4,. We have to define the various
components of 00} *. For a < x we take the same S,, which have the right
properties by (B1). We now define C,. So let vES,, s =s,. First we set:

Cv=Cs_(év+ 1)'

For A €C, set
Xy a1 =08 fias1i) = Ba(e).
Then (B2) yields that
A€C,— X,; Nvis transitive.
For 4 €C, we set

AN=X,Nv.
Using this notation we define
C,={A"|A€C,).
Nowlet AEC,, p =AY, f= f,.y- Since (&) = & we have f7C, = C, N 4. So

(E1) follows as in the proof of Lemma 2.2. Now let vES,, 5 =35, f; = fus)-
We set
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A, = {a <« |a=B(f.), ano cardinal and
(£, is cofinal or otp(C; N g f,) = a)}.

We shall set 4, =4, —d, for some J, <k such that J, <4,. The exact
definition of d, will be given later. But we can already show that (E0Q)(d)
holds. It suffices to show that if « is sufficiently large and f,, is not cofinal,
then there is some B <a* such that A(fj,)>A(f.,). Let H=Hj.
So H Ermng f,,, by (B0). Hence assume that H €rng £, and £, is not cofinal.
Then

X={(i,7|i€w, <a (i,§)Edomk }EH.

So by (BO) there is some B <a* such that XEmg f;,. But then 1=
A fas) ETNE fig5) since A is the smallest ordinal in J; such that X C dom h;);.

Now we define G,. So let vES,, a€EA,. Let s =5, and f = f,,), f: §=5.
Then set

G,(v)=the unique tsuch that S,k 1 =a™.

Then G,(v)ES, by (B3).

We now show (E2)(a). So let v, TES,, v <1, s =5,. Since f, ;, = id, there is
some 7 <x such that vEmg f, for all aEA, —n. Now let a€4, — 1,
S= fus, f:5=5. Then s,Ermg f by (B4). So let f(5)=s,. Set s’=s, and
f=f1J. So f:5=s5". Since §EJ, we have mg f,EJ;, J, F |mg f,,)] =
But f1 « implies that f, ;, = fo £, It follows easily that G,(v) < G, (1).

We now turn to (E2)(b). But first we give the definition of J,. So let vES,,
s =s,. We set §, = max{4d,, 4, } where §; is determined as follows. If otp C, <«
set 0,=otp C, + 1. Now let otp C, = k. Then D = C; — C, is some initial
segment of C,. Set 6, =otp D + 1. This definition of J, guarantees that for
(E2)(b) we only have to show

(*) Leta€A4,, n =G,(v), s =S5,, /= fs Let AEC, and assume that f(1) =
A. Then G,(A®) = 1™,

Note that 2 €C, by (B3) (since f(£,) < &), hence 2™ is defined.
First we introduce another notation. If 1 : s’= s” we set d(h) = s’. Now we

prove (*). Set g = fiesiiys § = Sy & = fiasity» P = A™. By definition and (B2) we
know that

Jug Fp=k*, JupFp=a*, d@g)=s, d@)=s,.

Now setf”=fr{,|1. So f: 5 |1=s|Asince fis|A)=s|A. Since fta=idla
we know that feg = f,.; and g 'e feg = f_4,)- But the last equation
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already gives that G,(p) = p since we get d( f,4)) = d(¢) and we know that
d(g) =s,and J, F p = a*. Note that a €4, by our definition of §,and the last
sentence of (B3). ged

The following absoluteness property of [J, has many important applications:

() Let W be an inner model and x > w some cardinal such that x* =
(x*)¥. Then if O, holds in W, it holds in V, too.

This property is also true for [0}, but not for O *, since successor cardinals
below k may not be the same in W and V. So we introduce another variation.

DEFINITION. Let k > @ be a cardinal.

(a) Let 4 C {a <« | lim(a)}.
Then O7 * (4) denotes the variation of 37 * which results if we replace
(E0)(d) by the following property:

Let v €S,. Then there is some p < k such
that 4, N pisclubinnforalln€A4 —p.

(b) Let k be singular. Then OO denotes the following principle:
There is 4 C x such that 007 *(4) holds and 4 has the following
properties:
Let (x; | J <p) be the monotone enumeration of A. Then p <k and
(i) x> K;>sup{x; | £ <d} forall 6 <p,
(i) (cf(x;) | J <p) is weakly monotone,
(ii1) x = sup{x; IJ <p}.
Note that for singular «, 00 follows from [Of *.

Clearly, the requirements for 4 in (b) are motivated by our specific appli-
cations. These requirements are just those appearing in the assumption of
Lemma 1.3. Some of them are actually redundant in the definition of 0 .

Now [O0; * (4) clearly satisfies (). But this is still not the case for (3} if x is
singular. But a weaker version of (*) holds which will be sufficient for us.

§3. D-principles in K

In this section we show that (0} holds in X for all cardinals ¥ > w. This will
use the fine structure of the core model. Our main reference for this material
will be [4]). But the basic properties will be used without explicit reference.

We only consider standard structures N =J4. We do not distinguish the
structure (J4, €,4 NJ4) and JA. For N=J% and A <« we set N [1 =JZ.
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Concerning general fine structure we use the same notation as in [4]. But we
need a slight strengthening of Lemma 4.12 in [4]. For this we introduce a
definition.

DEerFINITION. Set M, N to be transitive, n: M —N. Then n: M —¢ N
denotes that
(@) n: M —g Nand
(b) for cofinally many £ €On N M and all Z,-formulas ¢ we have M F A(¢)
iff Nk (n(&)).

The following strengthening of Lemma 4.12 in [4] can be proved exactly as
that lemma. So we omit the proof.

LeEmMa 3.1. Let N be acceptable, M transitive and m:M —gN°.
Then there are unique M, p such that M is transitive, M is p-sound and
M=M,

In distinction to [4] we call every J, a premouse, too. This seems to be a
useful convention. The definitions for premice are extended in the obvious
way. Especially, every J, isa mouse. If N = JUis a premouse and N # J, we say
that N is nontrivial. For premice N = JY we also set

U(UNN)  if Nis nontrivial
at(N) =

wa otherwise

and Ip(N) = Hw,.

We also extend the natural well ordering of the core mice (see [4], Definition
15.7) to the class of all mice as follows:

Let M, N be mice. Then M < N iff M, N have comparable mouse iterates
M’, N’ with M’€ N’ or (core(M) = core(N) and at(M) < at(N)). Formally, we
define the core model by

K = U{Ip(M) | M a mouse}
and for v EOn we set
K, = U{Ip(M) | M a mouse, On N M < *}.
We shall need the following fact.

LEMMA 3.2. Let N be a mouse at x, n =n(N), and N =N". Let EECy,
qE[E)<?, p=pn—K.Set W="hy(qU p) and W = hg(q U p U {&}).
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Then WNné=WnEandsup W=sup W.

ProOOF. Let M be the unique mouse at & such that Nis a mouse iterate of M
and set M = M". So there is an iteration map n: M — N. Note that n(q) = ¢
and pEmg n, say n(p) = p. Now let a: Q= hy;;(q U p), Q transitive, and let
o(&)=¢=at(M). Soo: M—y Mand W =mg(n 2 g). Let : Q —5, Q be the
1-iteration. Then there is some &: Q —, N such that 7 e ¢ = & o 7t and 5(&) =
&.Then W =rng gsince Q = ho(rng(7) U {&}). Hence the claim follows since
it &=id! & and 7 is cofinal. qed

We also need an additional lemma about the fine structure of mice.

LEMMA 3.3. Let N be a mouse, M transitive and n: M —; N™. Then there
is a unique m-sound iterable premouse M such that M = M™. Moreover, if
m > n(N) then M is a core mouse and n(M) = n(N).

ProoF. We do induction on m. For m = n(N) this is clear using soundness
above the critical point (see [4), Lemma 9.7), Lemma 3.1 and standard
arguments. Note that for m = 0 the fact that n is a G-embedding is sufficient to
get that M is a premouse. Now let m = n(N) + 1. This is the critical case. Set
n = n(N). We may assume that N is a core mouse since N**! = core(N)"*+!.
Set Q =N", p=pi*'. By Lemma 3.1 there is some transitive Q and some
P, Q, p-sound, such that M = 0?. Let 7 : Q —;, Q, #(p) = p, be the canonical
extension of n. By induction hypothesis there is some iterable premouse M
such that Q = M”. The embedding # shows that M is a mouse and n(M) = n.
Since Q is p-sound it suffices to show that p is the standard parameter of Q.
The usual argument using  shows that p is the <,-least parameter g such that
ho(po U q) = Q. But then it is known that p = pj*' U Cy. So we have to show
that C, = . Assume that C,, # &J . We shall derive a contradiction. Since n
is X,-preserving for certain parameters, 7 is Il,-preserving for certain para-
meters. Especially we get

(®) QO F ()~ Q k ¢(p) (¢ I,-formula).

We apply this to the statements in Lemma 3.2. So for E€6”C),, r = p — at(N)
we get

VaEEI™® hy(quruU{&NNEChy(quUr).

This eventually yields that {=ming”Cy, and gq=p—{¢&} satisfy
ho(po U q) C £. But (#) also implies that £ is a cardinal in Q. So r defines a new
Z,-subset of wpyin Q. This is a contradiction since r <, pand p is the standard
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parameter of Q. This ends the proof for m = n(N) + 1. But the rest of the
induction is clear by the m-soundness of core mice. qed

Later we shall also use the fact that if in the lemma above m = n(N), then M
will be a mouse if we only know that M is critical.
After these preliminaries we now come to the main part of this section. Set

S = {v | v primitive recursively closed, v no cardinal in K}.
For v €S set
N(v) =the < -least mouse N such that at(N) = vand vis no X ,-cardinal in N.
N(v) is called the minimal collapsing mouse for v.

LEMMA 3.4. LetvES and N = N(v). Then N is uniquely characterized by
the following three properties:
(i) N is a mouse, at(N) = v, v is no X -cardinal in N.
(ii) v is a cardinal in N.
(iii)) Cy Cv.

Proofr. First we show that N satisfies (i)-(iii). For (i) this is clear by
definition. Let N = JY, at(N) = k. Now assume that vis no cardinal in N. Then
v <k. Let f€ N show that vis no cardinal in N. Let f€J{, | — J§. But then it is
known that f€X,(J) (see [4], Corollary 11.10) and Jj is a mouse. This
contradicts the minimality of N. Now assume that CyZv. Let k€ECy —v. So
there is a mouse M at k such that N is a mouse iterate of M. But p(k) N
Z,(N)C M. Sovisno X, -cardinal in M. This contradicts minimality again.

The usual comparability argument shows that N is the only mouse satisfying
(1)—(ii1). qed

We now define S C S as follows.

Let vES. Then v €S iff the following three properties hold:

(i) Nv) Ev=a? for some a> w.
() N(v) F H,=K,.

(iii) H¥" E Vx 3y(x €y and y is admissible).

For vE.S we set

a, = the unique a such that N(y) kv =a ¥,
H(v)= H®.

Further let
S,={vES |a, =a}.
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By simple absoluteness arguments we get

REMARK 3.5. Let vES,. Then (N(1)|t€S,Nv) is (uniformly)
Y,-definable in H(v) with the parameter a. We now show

LEMMA 3.6. Assume V =K. Then
@ S,Ca™,S,isclosedina*,

(b) a no cardinal = sup S, <a ™,

(¢) x> w a cardinal >sup S, =«k*.

PrRoOF. (a) Obviously, S, Ca*. Now let v <a* be a limit point of S,.
Set H = U{H(7)| 1€S, N v)}. Clearly, vES. So let N = N(v). It is easy to
see that we only have to show that H = HY. Actually, H C HY is obvious and
it suffices to show that H¥ N p(v) C H. So let a EN be a bounded subset of
v. Let N=JJ. So a€JY,, — JY for some y <B. Hence M = J; is a mouse
and p}, <v for some n. But v is Z-regular in M. Hence vECy and v is a
limit cardinal in M. So there is some T €S, N v such that M < N(t). This
implies a €H.

(b) Choose a mouse M such that | M| <a*, at(M)> « and a is no cardinal
in M. Obviously, sup S, < at(M).

(c) If x> w is a cardinal then {v <x* | K, < K,+} C S,. ged

For vE€S, N=N(v), set n=n(v)=the least n such that v is no
X, . -cardinal in N; A(v) = A}, p(v) = pj, N(v) = N".

LEMMA 3.7. Let vES, a=a, N =N(). Then there is some pEN N
[On]<¢ such that N = hz(a U p).

ProOF. Let m = n(N). Obviously, n(v) =n = m. First assume that n =
m. Since N is m-sound we know that v is a cardinal in N but no X,-cardinal in
N.Hencepy Sasince Nk v=a*. Wealsoknowthat CyCv.SoNFv=a*
implies that Cy C « + 1. So the claim follows from N = Ax(py U px U Cy) (see
[4], Lemma 10.19). If n > m then N is a core mouse. So N is # + 1-sound and
the claim follows easily. qed

Now let vES, a=a,, N =N(¥), N =N(®), p =p(v), m = n(N), n = n(v).
By Lemma 3.7 we can define

p = p(v) =the <,-least p €N such that N = hy(a U p).

We set # =v, if v<p, and » =0 otherwise. We need one additional
parameter r(v). If n > m, we set r(v) = 1. So let n = mand k = at(N) = at(N).
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If pN[v,x)= we set r(v)=1. Otherwise, let £ =max(p N[v,k)). If £ is
singular in N we set r(v) = 1, too. So let £ be regular in N. Note that in our case
N is a core mouse and p = py —a. For u <a and max(p)<i =p set
Wi =hg,({} VU D), Wi =hza({u} Y (p—{&}). Wealso set W, = W7 and
w,=w..

Now set I = {u <a| Vi <usup W, <sup W,} and

I={u€I|sup W, <sup W,or IAEW, Iy <aWiNEZW?).
We now show that I # &.

PROOF. Assume that /=. Set p’=p—{&}. We first show that
hp(a U p’) 2 &. For notational reasons assume that p is a limit ordinal. So let
6 < ¢&. Since § Ehy(a U p) there are y <« and 7 <p such that § € W}. Since
I = there are u €1 and A € W, such that A = 5. Using / = & again we get
SE W N & C WE. This shows hz(a U p’) 2 £. Since & is regular in N there is
some B such that B N « & N and B is Z,-definable in N with parameters from
aU p’. Now let ¢: M= hy(a U p’), N transitive, and a(p)= p’. Then
M = hy(2U p) and M = M™ for some mouse M. Clearly, M < N. But B is
X,-definable in M. Hence M = N since N is a core mouse. So M = N and
N = hy(e: U p). This contradicts the minimality of p since p <, p. ged

So we can define r(v) = min I. Note that r(v) <a.
Finally, we set

qv)=p() U {a, ¥, r(v)},
5, ={p(v),a(v)),  wherea(v)=(4(v)X{0})U(g(v) X{1}).
Sos =5,E, fiy=id, and N = J, (as sets).

THEOREM 3.8. Assume V= K and let x > w be regular. Then (s, | VESNKkT)
satisfies (B),.

ProoF. First note that the “S,-notation” above is the same as in the
definition of (B),.. So (B0), (B1) have already been shown.

(B2) Let vES,, s=s,, AEC, f=fu f:§=s|A and n=
sup{p <, | flp) <v). We have to show that €S, and § = 5,- Set N = N(v),
n=n(), p=p©), g =q), r =r(v). Recalling the definition of C; it is easy
to see that

M gemgf,flay=a,fr)=r,f:J;—¢J;and f(n)=v, if v <p.

Leta, = (A X {0p U (@ X {1}), A(p)=p, wp =v;, M = Jj.
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) hylaU p)=M.

ProoF. By definition of f we know that hy(a U g)=M. But f:J,—~;J,
implies that § € hy(a U p), since ¢ Ehx(a U p). qed (2)

Clearly, f: M —; N. Hence by Lemma 3.3 and the following remark there is
an m-sound mouse M such that M = M". We also have

(3) n(M)=n(N), at(M) = n, nis a £,-cardinal but no X, , ,-cardinal in M.
We now show

(4) p = the <*-least p’ such that hy(a U p)=M.

PrROOF. Otherwise there is some p’ <, psuch that p € hy(a« U p’). But then
P Ehy(a U f(p")) and f(p’) <, p. Contradiction. qed (4)

5) CuC.

ProofF. If n>n(N) then M is a core mouse, hence Cy, = . So let
n = n(N) and set k = at(N), k = at(M), so f(k) = k. First assume p N [v, k) =
. Then p N [n, k) = & . But then by known properties of mice (4) implies
that C,, C 5. Solet p N [v, k) # & . For this case we introduced the additional
parameter r(v). Let & = max(p N [v, &), (&) = £. We shall show that C), =
& . If this were not the case then again (4) implies that EECy,, py — K = p — k
and & is regular in M. But we know that

ME@p,r) iffNE@p,r) (¢Z-formula).
So by definition of r
sup hy({r} U (» — {&}) <sup hu({r} U p)
or IAER ({ryu(p—{&)) Iy <
By ({2} U PY N EE ({7} V(2 — (E))
But by Lemma 3.2 this shows that & & C,,.

Putting all this together we have already shown that €S, M = N(n) and
M = N(n). Using the fact that f: J, —¢ J, it is easy to check that

(6) n€S,.
Hence by (4) we also know that p = p(n).
(7) r=r(n).

Proor. We only have to treat the case where r(v) has been defined in a
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nontrivial way. But since A € C, we have hx({r} U p) C N | A. Since r €I we
can replace rby any u <r. Hence we have forall y <r

ME§u,p) ffNE@u, p) (¢Z-formula).
This implies the claim. qed (7)
Putting all this together we have § =s,. qed (B2)

The proof of (B3) is almost a literal translation of the arguments above.
Actually, it is a little bit simpler since we have a full £,-embedding. So we leave
this 1o the reader.

(B4) Let f be given, f(1)=1, TE€S, Nv. So by Remark 3.5 N(t)Emg f.
Let fiM)=N(t). So ft M: N —z N(7) and f(a)=x. It follows easily that
TES,, M = N(t) and f(s,) = s.. qed

Now we turn to the principle (B),. In general, this principle is no longer true
in K for all cardinals ¥ < w. For example, the results of the next section show
that (B), fails in K if x is measurable in an inner model. In L, however, (B), is
true for all cardinals ¥ > w. For our application we only have to consider
singular cardinals k. So let x be a singular cardinal in K. Then we set

S* = (vES, | N(v) ¥ K is singular}.

Obviously, S is a nonempty final segment of S,. A standard argument
shows that K, €EN(v) for v €S, For a < k set

{S,, if a is no cardinal in X,
S*=

z otherwise.

Then set $* = U{S* | « = x}. For v €5* we now set

p*(v)={rm}u p(v)
and

st ={p(),a*(v)),  where a*(v)=(4(v) X {0}) U (p*(v) X {1}).

So we only change the parameter.
We need two technical lemmas.
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LEMMA 3.9. Let vES*, N=N(v)=J§, p=p(@), a=a, H=H(®).
Assume that n(v) =0, im(8), v =at(N) and H &€ N. Then there is some 6 € p
such that a = |6 |V.

ProoF. The easy argument used in the proof of Lemma 6.5 in [5] shows
that hy(v) = N, since H € N. So we have p C v. Now assume that the claim is
false. Then p = &, since p C v — a. We derive a contradiction by showing that
hy(@) N v Ca. Solet dE€h(a) N v. Hence there is a Zyformulagand a y <a
such that

(* d=xif Nk 3z¢(z,7, x).

Choose 7 < B minimal such that JY £ 3z, x ¢(z, », x). Set M =JY. A stan-
dard argument shows that 4,,(v) = M. So M is a mouse and n(M) = 0. Let M
be transitive, M= h,,(y + 1). Then M is a mouse and M < M. But the minimal
choice of 7 guarantees that core(M) = core(M). So M is an iterate of M. Let
7 : M — M be the iteration map. Then (+) implies that § Erng(n) N v C M. But
On N M < a by definition of M. Hence é <a. qed

LEMMA 3.10. LetvES*, v <at(N(v)) and cf(v) > w. Then Hv)EN(®).

ProOF. Set H = H(v) and let Q = U{M, | M €H, M mouse} where M,
denotes the v-th iterate of M. Let F = {E Cv | E 2 G for some club G C v}.
Then Q =Jf for some J, Q is a countably complete premouse and H C Q.
Choose § = 6 minimal such that § = J{ is critical. Then Q is a mouse since §
is countably complete. Hence 0 < N(v). But N(v) # Q since at (N(v)) > v.
Hence H(v)EN(). ged

THEOREM 3.11. Assume V =K and let x be a singular cardinal. Then
(s* | vES*) satisfies (B),.

ProOOF. (BO), (B1) are clear. From now on we use the “S*-notation”.

(B2) First we define (¢, | vES*). Solet vES*, s* =¥, C = Cy, p =p(v),
N = N(v) etc. We distinguish two cases.

Case 1. n =0 and (p is a successor ordinal or v <at(N) and H € N)). In
this case cf(v) = w (especially, see Lemma 3.10). We set &, =p. So (B2) is
trivially satisfied.

Case 2. Case 1 is not satisfied. We set
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{min{).EC U{p}|HEhy (U p)} ifn=0and HEN,
g =

min{AEC U {p}|aEhz{aU p)}  otherwise.

Note that in any case a€hy s (a U p) because a is definable in H as the
largest cardinal. Clearly, we have & <p if sup C = p. Hence (B2)(a) is satis-
fied. We now show (B2)(b). Solet LEC, A >&,, f= foin) f: S =5* | A and set
n=sup{d =, | f(6) = v}. First we show that €S, and § = sy. This follows
almost exactly as in the proof of (B2) in Theorem 3.8. By definition of &,, we
have f(a) = a. Especially, §, f given in a canonical way M, M such that
M = N(n), M = N(n). To show that n €S, we distinguish several cases. If
n >0, then there is a canonical extension f" 2 fsuch that f :M —; N(v). Then
n €8, follows easily. So let n = 0. If H& N, hence v = at(), then by Lemma
3.9 a is Z, = definable in N with the parameter p because N has a X, Skolem
function. But then 7 €S, follows exactly as in Theorem 3.8. Hence finally let
n=0 and HEN. Then HEmg f by definition of &. So let AH)=H. It
follows easily that H = HY and €S,. If a = k, then it is easy to see that
N | A E k is singular. Hence we have 1 ES¥.

The only thing left to show is f{ £,) = &,. This is obviousif n >0or HEN. So
let n =0, H& N and v = at(N). We have to show that H(n) &€ N(n). But in our
case « is X,-definable in N with the parameter p. So f: N(n)— N is X, with
respect to the parameter . It follows that p(a) N N(17) € N(n7) because H ¢ N
and « is the largest cardinal in N. qed (B2)

(B3) First we define (d, | vES*). So let vES¥. We set
d,=min{d <k IK,‘Eka(J Up)} and 6, =max{d, r(v)+1}.

So the last claim in (B3) is satisfied. Now let v ES¥, s* = 5*,0, < a <k, ano
cardinal, f'= f, ), f: §=5* a=B(f). Since k Emg f, we have a <v,. So let
JEt=at. Let M=J,{1, where a,= (A X {0}) U (g X {1}), p =v; and let
f(p)= p. Note that f(r)=r.

Exactly as before we get

(1) hyla U p)=M. ]

(2) There is an m-sound mouse M such that M" =M, n(M)= n(N),

at(M) = 1. Moreover 7is a X -cardinal in M but no Z, , \-cardinal in M.

(3) p =the <,-least p’ such that hy(a U p') =M.

But we have to use one new argument to show
4) CyCr.
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PRrROOF. As before we may assume that n = n(N). Moreover C,, — 7 C p.
The parameter r shows again that y € C, if f{y) Z v. But if y € pand f(y) <v,
then | f(y)|" = k. So in this case f() is singular in N, hence y is singular in M
and y € Cy. ged (4)

It is easy to see that
(5) 1€8t.

We now show
6) r=r(7).

ProoF. Since k is singular in N it is easy to see that r = 1 iff r(7) = 1. So let
r # 1, hence r has been defined in a nontrivial way. Since ftr + 1 =idlr + 1
and fis X,-elementary we immediately get that r = r(t). qed (6)

Putting all this together we have shown § = s,.
Finally, we show f(&,) = &,. It suffices to show:
(7) Let A€EC; and f(A) = &,. Then o, H(T)E hyy3(a U p).

ProoF. We know that K, Emng f. So let f{IK) = K,. Obviously, K = HY,
where f(k) = k. Actually, we know that K € sy (e U p), since fll) = &,. Set
y = |a| <a. Clearly, « = (y *)™. Hence a, H(t) are definable in K with the
parameter . Hence K € hy;),(a U p) implies the claim. qed (B3)

(B4) is obvious. qed
Using the covering theorem for K we get

THEOREM 3.12. Assume - L*. Let x be a singular cardinal. Then O}
holds.

ProoF. By the covering theorem we know that x is singular in K
and x* =(x*)X. Choose 4 C Card N x such that sup4 =«, |4A| <k and
w,<min 4. Set 4 ={(r*)¥|tEA}. By the covering theorem A satisfies
the conditions (i)-(iii) in the definition of 0. By Lemma 2.4 and Theorem
3.11 there is a O} * -sequence in K. This sequence is a [0} * (4)-sequence
in V. qed

We also need the following facts about “partial measures” in K.

LemMMAa 3.13. LetveES,.Set H=H(v), N =N(v).
(a) Assume that U Cp(k) N H and (H,U) k “U is normal”, (H,U) is
amenable, and U is countable complete. Then k € Cy,.



314 H.-D. DONDER Isr. J. Math.

(b) Assume that x € Cy. Then there is some U C p(x) N H such that (H, U)
is amenable and {H, U) k “U is normal”.

(c) Let U, C p(k) N H(i =0, 1) such that (H, U;) k “U;is normal”, {(H, U;)
is amenable and U, is countably complete. Then U, = U,.

ProOF. (a) Set M =U{JY,|JVEN}. So M =J¥ for some J. By the
assumptions we get

(1) Mis a premouse, M CH, M¢H.

Since v < (x*)X we know that U is not normal in L[U]. Hence there is some
B = J such that p(x) N Z,(JF)ELJ;. Let B be the least such and set M = J{.
Such an M is a mouse since U is countably complete. A standard argument
shows that

(2) For all mice PEH we have P <M.

Now let M, be the 1-mouse iteration of M. It suffices to show that M, = N.
We use Lemma 3.4. Since H k V = K and since mice in the sense of H are
really mice, we get by (2) that at(M,) = v. Obviously, v is no Z,-cardinal
in M, and C,, Cv. Finally, we show that v is a cardinal in N. Again (2)
yields that M, F v <k* since H F v =x*. Assume that v is no cardinal in
M,. Then there is some r C k¥ X x such that r €M, and r has order type v.
But then r €M C H. This is a contradiction since H satisfies enough set theory
and vg¢H. qed (a)

(b) Let k €Cy. So N is the 1-mouse iteration of some mouse M = J at k.
Now p(xk) N H = p(x) N N = p(x) N M. Hence (H, U) F “U is normal”. The
same argument shows that (H, U) is amenable. qed (b)

(c) follows from the proof of (a). qed
The proof of the following remark is left to the reader.

REMARK. Let vES,, N=N(), N=N(), p=p(®). Then: k€Cy iff
n(N)=n(v), k€p, hy(k U(p—{k})N(x,at(N))=F and p(x)NNC
hp(x U (p — {k}).

LEMMA 3.14. Let vES,, cf(v)> w, k regular. Assume that there is no
countably complete U such that (H(v), U) F “U is normal” and (H(v), U) is
amenable. Then there is a club C C S, N v such that for all A€ C there is no
countably complete U such that (H(4), U) k “U is normal” and (H(4), U) is
amenable.

Proor. Set N = N(v), H = H(v). First we show
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(1) k& Cy.

PrOOF. Asume that k € Cy. Then by Lemma 3.13(b) there is some U such
that (H, U) is amenable and (H, U) k “Uis normal”. But then Uis countably
complete since cf(v) > w and cf(x) > w. This contradicts the assumption.

qed (1)

Now let (C, | nES,) be the sequence which results from the proof of
Theorem 3.8 and Lemma 2.2. Set C = C,. Then C is club in v since cf(v) > w.
The proof of 3.8 and 2.2 shows that:

(2) There is a sequence {(g; | A€ C) such that

() 0,: N(A) =5, N(v), 0,1 4 =id 1 4, g;(p(A)) = p(v),
(i) 4, n€C,A<n—mgag, Cmga,,
(iii) N@w)=U{mg g, | A€C).

Now by (1) x & Cy. Hence by (2) and the remark above there is some y <k
such that x & Cy,, for all A€ C — y. Hence by 3.13(a) C = C — y satisfies the
claim. qged

The next result is a strengthening of the well-known fact that assuming - L*
we have (k*)X = k* for any weakly compact .

LEMMA 3.15. Assume -1 L*. Let k > w be regular and (k") <x*. Then
O, holds.

Proor. We may assume that ¥ = w, since O0,, holds. Hence by the cover-
ing theorem for K we have cf((x*)X)=k. Let (C, |vES,) be the natural
O,-sequence in K which is given by Theorem 3.8 and Lemma 2.2. We
shall show

(*) There is no unbounded C C S, such that C Nnv =C, for all vES,.

It follows easily that [J; holds. To see this just choose some f: ¥ — S, which
is normal and unbounded. For limit ordinals A < kset D; = f~'” Cy,,. Then D,
is a [J7 -sequence.

So it remains to prove (*). Assume that C is a counterexample. Then we
know again by definition of (C, |'v €S, ) that there is a commutative system
(0, |A€EC Nv) of embeddings a;,: N(A)—5, N(v) such that g,,} A =id! A
and a,,( p(4)) = p(v). Set T = (x *)X. Since cf(tr) > w there is a transitive N and
0;: N(A)~g N for AEC such that (N, g;) is the direct limit of the system
(0;,,). An application of Lemma 10.38 in [4] shows that N=N" n=
n(min C), for some mouse N. But we also know that Ay, (x U p(1)) = N(A)
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for A € C. So we have hy(x U p) = N where p = 6,( p(4)). We alsohave t C N.
Moreover, N €K since N = N" for some mouse N. But then 7 is no cardinal in
K which is a contradiction. qed

§4. [O-principles and ultrafilters

This section contains the main results of this paper. We use our (J-principles
to get regularity of ultrafilters.

THEOREM 4.1. Let k > w be a successor cardinal or a singular cardinal.
Assume that O, holds. Then every uniform ultrafilter on x is regular.

Proor. If kis singular let 07 be given by 00} * (4). In both cases let (0 be
givenby S,, C,, 4,, G,.

Now let Ube a uniform ultrafilter on k. We have to show that Uis regular. So
if k is regular, then by Kanamori’s theorem we may assume that

U2{CCxk|Cclubinx}.
If k is singular, then by Lemma 1.3 we may assume that
UD{CCk|CNzclubin 7 forall 7EA).

So in both cases by (EO)}d) we have U 2 {4, | vES,}. If x is a successor
cardinal we may also assume w.l.0.g. that sup S, <a * for all « < «. To see this
note that (E0)a)(d) implies that this is satisfied for all a = A if k =1 *. But
clearly we can assume that S,= & fora<iifk =4".

After these preliminaries we can treat both cases together. So we only use the
weaker version of (E2)(b) which is also satisfied in the singular case. Fora =«
set $, = (vES, |sup C, =v}.

CraiM 1. There are functions g, : S, — On (& < k) such that:
(i) &.(mEC,

(i) v,7€S,,v<1,v€C,—~(C, — &) N(C, — &.(1)) = I,

(i) 4,v€ES,, LEC, ~ g () =& ).

PrOOF. Let a<xand S, # &. By recursion we define g*: S, N (v +1)—
On for v € S, which satisfy the conditions (i)-(iii). After that we can set g, = g’
where p = max S,. Note that max S, exists. The initial and successor steps of
the recursion are obvious. So let v be a limit point of S,. If sup C, <v, hence
cf(v) = w, let H be a monotone w-sequence of successor points in S, such that
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supH =v and minH>supC,. Set H= if supC,=v. Now let n€
S, Nv)—(CUH). Set

y=sup((CUH)Nv) and u=min((C UH)—(y + 1))

Hence y <n <u. Then set g'(n) =min{A EC, Il >y and A = g*(n)}. For
n€(C, U {v) NS, set g'(n) =0. Clearly, g* satisfies the conditions (i)-(iii).
ged (Claim 1)

Clearly, we may assume that 4, C {a <x | lim(a)}. Now let v €S,. Then by
(E2)(b) we can define a map f,: 4, = v by

S@)=min{p EC, | G.(p) Z £.(G.(")}.
CLamM 2. Lety <k, lim(y). Then
Y, = {v€ES, |otp C, =7, f, no v-decomposition of U}
is not stationary in x*.
ProoF. There is a function 4: Y, — k™, h(v)EC,, such that
Z,={a€A,|f(a)Sh()}EU forallveY,.

We shall show that (C, —h(W))N(C, —h(t))=L for v,TE€EY,, v#1. It
follows immediately that Y, is not stationary. So let v, T€Y,, v <t. Assume
that A €(C, — h(v)) N (C, — h(1)). We shall derive a contradiction. Note that
v& C, since otp C, = otp C, = 7. Set u = sup(C, N v), p = min(C, — v). Since
Z,n Z, €U, we can apply (E2)(a) to find some «aE€Z, N Z_such that G, (u) <
G, (v)<G,(p). Set v =G,(v), T=G,(1). By (E2)(b) we get that v&C, and
G, (A E(C, — g.(M)) N(C, — g,(1)). This contradicts (ii) of Claim 1.

qed (Claim 2)

For y <k, lim(y), now choose a club D, C k* such that D, N Y, = &. Set
D =D, |y <k, lim(y)}. Then D is club in x* and we have

(1) Let vES, N D such that otp C, < k. Then f, is a v-decomposition of U.
Now we shall show

(2) Let w <p =k such that p is regular. Then U is (w, p)-regular.
This is sufficient, since we can apply Lemma 1.1 if x is singular.

So let pbe as in (2). We shall apply Lemma 1.2. Choose some v €S, such that
cf(v) = p and v is a limit point of D. So there is some B C v such that

(@) Bclubinv, BC D,otpB =p,

(b) A€B — A 1is a limit point of C,.
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Set X = A,. For A €B define f;: X — 1 by

] filw ifa>otpC,
file)=
W(a) ifa< otp C,.

Clearly, f, = fymod U. So f, is a A-decomposition of U since B C D. But
(E2)(b) and (iii) of Claim 1 show that f; =< f, for all A,u€B, A =u. So
{f |). € B) shows that U is (w, p)-regular. ged

THEOREM 4.2. Assume 1 L*. Let x be a singular cardinal. Then every
uniform ultrafilter on x is regular.

Proor. This follows immediately from Theorem 4.1 and Theorem 3.12.
qed

THEOREM 4.3. Let k > w be regular and assume (k*)* = x*. Moreover
assume that x is not measurable in an inner model. Then every uniform
ultrafilter on x is regular.

ProoF. Let U be a uniform ultrafilter on x. We have to show that U is
regular. So by Kanamori’s theorem we may assume that U 2 {C C | C club
in «}. Let S,, C,, 4,, G, be the natural sequence giving [0} in K. For vES,
define f,: A, ~k by f,(a) = G,(v). Let g: k — On be defined by g(a) = (a )X
We distinguish two cases.

Case 1. There is some f <, g such that f, <, ffor all vES,.

In this case we can argue exactly as in the proof of Theorem 5.1 if we replace
A, by A, = {a€A, | f,(¢) < fla)} and S, (@ <k) by S, N (fla) + 1).

Case 2. For all f <, g there is some vE S, such that f < f,.

We now use Lemma 2.3. Hence by taking restrictions we get 7, : H(G, (v))—,
H(v) for « €A, such that

() mta=id'a; n)(a) =K.

(2) Lett€S,. Nv, T =mn.(7). Then T = G,(1) and #n} = ) I H(G, (7)).
Moreover, we know by results in §3 that

(3) t€S, Nv—=H(t)C H(v).

(4) v a limit point of S,—~ H(v) = U{H(1)| €S, N v}.

(5) > w a cardinal in K — K,,, C U{H(v) | vES,}.

So by the assumption in our case we get

(6) Let f:A—V, AEU, such that fla) EK,, for all aEA. Then there is

some v ES, such that {« €4 | fla)EH(G (a))} EU.
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ForveES,, a€A,, we set

Ul ={X Ca| XEH(G,(a)) and a E (X))}
and
Z,={a€4, I (H(G(a)), U;) is amenable}.

(7) Let Z,€ U. Then (H(v), U N H(v)) is amenable and (H(v), U N H(v)) k
“U N H(v) is normal”.

ProOOF. By (6) there is some T €S,, T > v, such that
X={a€Z,NA. | UEHG()}E .
We may assume that H(7) < K,+. Set
A ={a€A, | vErmg n; and n; : H(G, (7)) —3, H(1)}.

Then A is club in k. Hence Z = X N A€ U. For a€Z set U*= n’(U}). Then
(H(v), U*) is amenable and H(v) F “U*is normal”. Moreover, U, is countably
complete in H(G, (7)) forall «€ Z. To see this let (X; | i<w)€EH(G,(7))such
that X; € U?. Then a EMN{7 (X)) | i <w}. Hence U" is countably complete in
H(z). But H(t) < K,+. So U* is countably complete in K. Applying 3.13(c) in K
we get that U* = UP for all a, B € Z. It follows easily that for a € Zevery Y € U®
countains a nonempty final segment of Z. Hence U*= U N H(v) since Z€ U.

qed (7)

(8) There is some 1€ S, such that Z, g Uforall vES, — 1.

Proor. Assume not. Then by (7) for cofinally many v& S, (H(v), U N H(v))
is amenable and (H(v), UNH(v)) F “UN H(v) is normal”. But then
(K+, UNK,) is amenable and (K.+, U N K,+) F “U N K,+ is normal”. A
standard argument shows that U N XK.+ is countably complete. So U N L[U] is
normal in L[U] by Lemma 16.11 in [4]. This contradicts our assumptions.

qed (8)

Now choose 7 as in (8). So by (6) we can define recursively a sequence
{(y(9) | 0 < k) with the properties

9) (a) (y(9) | 0 <) is normal, y(0) =1, y(9)ES,;

(b) Xs = {a€A4,5)N Ays+1y | UPEH(G,(y(6 + 1))} EU for all § <k.

Now set y = sup{y(d) I J <k}.

(10) There are some Y C 4,, YEU, and a club C C {y(d) | 0 <k} with the

property:
Leta€Y, n€(CNmgna2) U (7}
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Then (H(G,(77)), U?) is not amenable.

Proor. By (6) we can choose a vES,, v > 7, such that H(v) < K.+ and
Y = {a€A, |yEmg n}, UIEH(G,(v))} € U. We distinguish two cases.

Case A. There is some DEK such that (H(y),D) is amenable,
{(H(y), D) F “D normal” and D is countably complete in K.

Then there is a club CC {y(6)|(5<x} such that (H(n), D N H(n)) is
amenable for all  EC. Let p = min C. Then set:

Y=k—-Z)NYN{a€A, IpErng m}.

Hence YEU. Now let a€Y, n€(CNmgnl)U {y}. Assume that
(H(G,(n)), U’ were amenable. By uniqueness (see Lemma 3.13(c)) we get
n(UN=D NH(n). But DN H(p) is amenable and =} (G,(p))=p. So
(H(G,(p)), Ul N G,(p)) is amenadble. But U! N G,(p)=U¢. Hence aE€EZ,
which is a contradiction.

Case B. Case A does not hold.

So by Lemma 3.14 there is a club C C « such that for all n €C there is no
D €K such that (H(n), D) is amenable. (H(n), D) F “D normal” and D is
countably complete in K. Now set Y =Y. Let a€Y, nE€(C Ngn2) U {7}
Then (H(G,(n)), UZ) cannot be amenable, since otherwise ) (U?) would show
thatveéC. qed (10)

Now let Y, C be as in (10). Set
A ={a€A4,| C N mgn is an initial segment of C}.

Then A isclubin x, hence X = ¥ N A € U. Let C*Dbe the set of limit points of C
in y. For n € C* we can define f,: X —n by

min{p EC N n | V2 & H(G,(n))} ifnEmgny,

o=
min{pEC Nmg ! | U € H(G,(y))} otherwise.

Obviously, f, = f, for all n,p€C*, n <p. But (9) implies that f, is an
n-decomposition of U for every n € C*. So by Lemma 1.2 ( f, | n € C*) shows
that U is regular. ged

As a corollary to the proof we get:

COROLLARY 4.4. Let k> w be regular and (x*)X =x*. Let U be a non-
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regular wltrafilter on x such that U 2 {C C k | C club in x}. Then U N L[U) is
normal in L[U].

Finally, we show:

THEOREM 4.5. Assume 1 L*. Let k > w be a cardinal and U a uniform
ultrafilter on k. Then U is (w, p)-regular for all p < k.

ProoF. By Theorems 4.2, 4.3 we only have to treat the case that x is regular
and (x*)X <k*. But then 007 holds by Lemma 3.15. Then the claim follows
from Theorem 1.4, qed

We finish this paper with a few remarks. The proofs show that for regular
Kk <w, O holds if V= L[A] for some A C k. So it holds if x* is not
inaccessible in K. This already shows that to get a nonregular ultrafilter on a
successor cardinal you need the consistency of an incaccessible cardinal. Using
additional known ideas one can show that this is true for arbitrary regular
cardinals.

Moreover, slight variations of our proofs give stronger results for filters. For
example, if k > w is regular, then 07 implies that every k * -saturated filter #
on x containing all club subsets of x is regular. Here regularity for filters should
be defined exactly as for ultrafilters, i.e. using sets of #-measure one. There is
also a suitable version of Kanamori’s thoerem for uniform x*-saturated filters
on k. The situation is slightly different in Theorem 4.3 because the distinction
of the two cases uses the ultrafilter property. Moreover, Theorem 1.4 only
holds for x-saturated uniform filters on x. But we have a different proof of
Theorem 4.5 which does not use Theorem 1.4. Details concerning these
remarks will appear in a later paper.
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