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ABSTRACT 

We show that in the core model every uniform ultrafilter is regular. In 
addition, we prove that the existence ofa nonregular uniform ultrafilter on a 
singular cardinal implies the existence of an inner model with a measurable 
cardinal. 

.~0. Introduction 

Regular ultra filters were introduced because they yield ultrapowers of 
maximal cardinality. Their basic properties including refinements of the 
notation of regularity can be found in [3]. Chang and Keisler also formulated 
various questions concerning the existence of nonregular ultrafilters (see 
Conjectures 4, 14, 15, 16) in [3]. In this paper we shall show that one cannot 
prove the existence of a nonregular uniform ultrafilter on an infinite set in 
ZFC + GCH (if ZF is consistent). 

Various partial results in this direction have been known before. Prikry 
showed in [ 15] that assuming V -- L every uniform ultrafilter on to~ is regular. 
His proof actually showed that assuming V ffi L every uniform ultrafilter on x + 
is (x, ~c+)-regular. Chang analyzed how one could improve this result (see [2]). 
This was used by Jensen in [8] to show that in L every (~ +, x)-regular ultrafilter 
is (F, x)-regular for all regular x. Especially, in L every uniform ultrafilter on 
~o,, n < oJ, is regular. 

Later, Benda found a simpler proof of Prikry's result. He showed that a weak 
version of the Kurepa hypothesis for x + implies that every uniform ultrafilter 
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on x + is (x, x+)-regular (see [ 1]). This proof was used by Ketonen to show that 

70 ~ is sufficient to get the same conclusion (see [12]). Using the core model 

Jensen weakened the assumption to 7L~ (see [7]). Here " 7 L  ~'' is an abbrevia- 

tion of the statement "there exists no inner model with a measurable cardinal". 

Moreover, Jensen proved a new result about weakly normal ultrafilters. Using 

a theorem of Kanamori and Ketonen (see [10]) this result has the following 

consequence concerning regularity: 

(.) Assume 7L ~, x regular and 2 -~ = x. Then every uniform ultrafilter on x is 
(co, 2)-regular for all 2 < x. 

For uniform ultrafilters on singular cardinals no result in this direction 

seems to have been known. In this paper we shall show (see Theorem 4.1): 

(A) Assume 7L ~. Let x > co be a singular cardinal. Then every uniform 

ultrafilter on x is regular. 

For regular cardinals we need a stronger assumption (see Theorem 4.3): 

(B) Assume 7L ~'. Let x > co be regular and assume (x+) ~c = x +. Then every 

uniform ultrafilter on x is regular. 

Especially, we get that in K every uniform ultrafilter on an infinite set is 

regular. Finally, we use our method to eliminate the assumption 2 -~ = x in (.) 
(see Theorem 4.5). 

Of  course, it is a natural question whether one can remove the assump- 
tion (x+) ~c= x + in (B). This problem remains open even if we strengthen 
7L ~ to 70 #. 

In the other direction many results are known. Prikry showed that one can 
have a uniform ultrafilter on a singular cardinal x which is even 2-indecompos- 

able for all co < 2 < x, if  one assumes the consistency of  a measurable cardinal 

(see [14]). This shows that the assumption 7L u is necessary in (A). Using a 

huge cardinal Magidor constructed a model in which there is a uniform 

nonregular ultrafilter on co2 (see [ 13]). Very recently, Foreman, Magidor and 

Shelah obtained the analogous result for col. 

Finally, we should mention a result of  Prikry and Silver. They showed that 

every uniform ultrafilter on a regular x is 2-decomposable if there is a 

nonreflecting stationary subset of  x consisting only of  ordinals of  cofinality 
;t (see [16]). The proof of this theorem given in [1 I] was a key to the results in 
this paper. 

The paper is organized as follows. In § 1 we prove some preliminary facts 
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about ultrafilters. Moreover, we prove a new result which introduces some of  
the ideas used later. In §2 we define the crucial combinatorial principles. They 

are all strengthenings o f l ~ .  We also reduce these principles to some technical 
statements about "Y~rcollapsing" structures. The second combinatorial prin- 
ciple was formulated by Jensen after he saw the original version of  our  proof. 
There we used a weaker principle. In §3 we prove these principles in the core 
model K. The main part of  the method used in that section is known (e.g. see 
[ 17]). §4 contains the main results of  this paper which were stated above. 

§1. Ultratilters 

In this section we introduce some basic definitions and prove simple lemmas 
about ultrafilters. 

DEFINITION. Let Ube an ultrafilter. Then Uis uniform iffall members  of U 
have the same cardinality. 

It suffices to investigate uniform ultrafilters, for any ultra filter U determines 
a uniform ultrafilter 0 such that U and 0 have the same structural properties. 
For our purposes it is also sufficient to consider only ultrafilters on cardinals. 

DEFINITION. Let Ube an ultrafilter on x and let 2, ~ be cardinals. Uis (2, z)- 
regular iff there is a sequence (X, [ a < T ), X~ E U, such that fq,eB X, = ~ for 
all B __. z, I B I > 2. U is regular iff U is (co, x)-regular. 

It is easy to see that for an ultrafilter U on x the following two properties are 
equivalent. 

(a) U is (2, z)-regular. 
(b) There is a sequence (u~ I v < x) such that u~ ___ r,  I u, 1 < 2, and V a < r 

A sequence as in (b) will be called a (2, r)-covering of U. 

LEMMA 1.1. Let U be an ultrafilter on x. Let ~ be a singular cardinal, 2 
regular and let U be (2, p)-regular for all p < ~. Then U is (2, z)-regular. 

PROOF. Let t = cf(z). Let (z~ ]~ < t )  he a normal sequence of  cardinals 
such that "Co -- 0 and z -- sup{z6 [ ~ < ~'}. Let (u~ [ v < x)  be a (2, Zo)-Covering 
of  U and (a, ] v < r )  be a (2, t)-covering of U. For v < x set 

u,=U(u  +' Io a,). 
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Since 2 is regular we have l u l l <  2. Now let a < T. Choose 6 such that 
% _- a < z6+ 1. Then 

{v <,c  I __ {v I n {v < x  u. 

So (u, I v < x) is a (2, Q-covering of U. qed 

DEFINITION. Let U be an ultrafilter and f :  X ~ ; t ,  X ~  U. Then f is a 
2-decomposition of U iff for all a < 2 {v E X I f(v) >= a} E U. 

For singular 2 this notation is slightly misleading but it is good enough for 
our purposes. 

The following translation of regularity is useful for us. We do not state the 
most general version. If  f ,  g :  X--* On then f <  g means that f(x)  < g(x) for all 
x E X .  

]_,EMMA 1.2. Let U be an ultrafilter on x and let z > co be regular. Then the 
following properties are equivalent: 

(a) U is (co, Q-regular. 
(b) There are B c_ On, otp(B) = z, B closed in sup B, X E U and 2-decompo- 

sitions f~ : X ~ 2 for 2 EB such that fa <-_ f~for all 2, # ~ B ,  2 _-< #. 

PROOF. (a)-*(b) Let (u r ] ? < x )  be a (co, Q-covering of U. Set B =  
T - {0). For 2 E B  define fa : x ~ ; t  by f~(7) = sup(ur n 2). These satisfy (b). 

(b) ~ (a) Let B, X, f~ be given. For t /~  B let 

X~ = {TEX]  V J ~ B  -- (q + 1)f6(7) > t/}. 

By assumption we have that 

x .  = ] = > ,1) 

where # = min(B - ( ~ / +  1)). So X~ ~ U, since f~ is a #-decomposition of 
U. We show that (X~ I r /~B)  gives the (co,~)-rcgularity of U. So let 
(q(n)ln < t o )  be a monotone sequence such that ~I(n)EB and let ~/= 
sup{q(n) I n < to}. Then r /~B since B is closed in sup B and c f (z )>  co. We 
have to show that n .<o,  x~(.)ffi ~ .  Assume that this is not the case. So let 
a~n.<o,X~t.). Then f~(a) > r/(n) for all n <co,  so f~(a) > ~/. But this con- 
tradicts the property f~ : X ~ r/. qed 

If U is an ultrafilter on x and f :  x --- 2, then let 

f*(U)--  {X c_ A I f  - ~  X ~ U } .  
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Clearly, f*(U) is an ultrafilter on 2. Note that U is (g, p)-regular, if f *(U) is 
(g,p)-regular. Kanamori showed in [10] that for any uniform nonregular 
ultrafilter on a regular x > o9 there is some f :  x---,x such that f*(U)~_ ~ ,  
where ~ is the filter generated by the club subsets of x. We also need a 
version of Kanamori 's result for ultrafilters on singular cardinals. If U is an 

ultrafilter, f : X - . O n ,  g :  Y- -On ,  X, Y ~ U ,  then f < v g  denotes that 
{ x e X  n Y I f ( x ) < g ( x ) } e U .  

LEMMA 1.3. Let x be a singular cardinal. Let (x6 [c~<p) ,  p < x ,  be a 
sequence of limit cardinals such that: 

(i) x > tc6 > sup{x¢ I ~ < c5}. 
(ii) (cf(x6) I t~ < p )  is weakly monotone. 

(iii) x = sup{of(x6) [ c5 <p} .  
Let U be a uniform ultrafilter on x which is not regular. Then there is some 
f :  x - .  x such that 

f*(U) D_ { C c_ tc I V¢5 <pC N x~ club in x6}. 

PROOF. Let F be the set of all f :  x - .  x which satisfy 
(1) f i s  weakly monotone, 
(2) 3 ~ < p  V r />  ~ f ' x ,  unbounded in ~ .  

It suffices to show 

(,) F has a least element mod U. 

To see this, assume tha t f i s  such a function. Then id t x is the least element of 
F mod f*(U).  Now let C c_ x such that VJ < p C  M x~ is club in x6. Define 
g : x ~ x  by g(a)=sup(CNa).  Then g ~ F  and g < i d r x .  So A =  
{ a < r I g ( a ) = a } E f * ( U ) .  But A C _ C U B ,  where B f ( m i n C + l ) U  
{x6 I ~ <P}-  So C~f*(U) ,  since IBI < x and f* (U)  is uniform. 

So we have to prove (,). Assume that (,) is false. We define a sequence 
(f~ I a < r)  such that fa E F and 

(a) f~+l <v f~ ,  
(b) fa ---- f~ for all ot < p < x, 
(c) fa satisfies the condition (2) for the least ~ < p  such that cf(x6) > a. 
The definition of  this sequence is done by recursion. Successor steps and the 

initial case are obvious. If  ;t < x is a limit ordinal we just set 

~0 ' )  = min{f.O,)I a < , l} .  
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Finally, we then set Xo--{), < r i f e +  ~(),)< f~ (~,)}. Then (xala  < ~c) shows 
that U is regular. This contradicts our assumption, qed 

The proof of  the next result is a good introduction to the method used in this 

paper to get regularity properties of  ultrafilters. But first we need a definition. 

DEFINITION. Let lc > co be regular. Then I~- denotes the following prin- 

ciple: 

There is a sequence (C~ I y < r ,  lim(~,)) such that: 

(a) C~ _ ? is closed in y, 

(b) cf(y) > co ~ sup Cy = y, 

(c) c, --. ca = c, n 

(d) there is no unbounded C c ~c such that C n :t = Ca for all/I E C. 

So for Ic = ~ + 121~- is a weaker version of the more familiar principle IZI~. We 

hope that the different indices are not confusing. Clearly, [27 cannot hold if~c is 

weakly compact. In [9] Jensen has shown that 121~- holds in L for all regular 

Ic > co which are not weakly compact. Note that 12o], is provable in ZFC. 

THEOREM 1.4. Let Jc > co be regular and assume that 12!~- holds. Then every 

uniform ultrafilter U on ic is (co, ~)-regular for every ~ < ~c. 

PROOF. For ~c = co, this is a classical result. So let ~c > col and let U be 

given. It suffices to prove the claim for all regular ~ such that co < ~ < ~c. So let 

such a T be given and let (cyly < x, lim0,)) be a 12l~--sequence. Set D = 

{ ? < l c [ s u p C ~ = ? } .  We first define a sequence (ga l a<~c )  such that 
ga : D n (a + 1)--- a and the following three properties hold for all a < ~c: 

(i) ga is regressive. 

(ii) Let ~,, ,l E D, y < R _-< a, and ~, ~ Ca. Then 

( c ,  - n ( c a  - = 

(iii) Let ?, 2 E D  n (a + 1) and y E Ca. Then ga(Y) < ga(2). 

The definition is done by recursion. Set go -- O and ga+ ~ ---- ga. NOW let a < x 

be a limit ordinal. If sup Ca < a (hence cf(a)--co) choose a monotone co- 

sequence H such that sup H - - a  and sup Ca < rain H. If  sup Ca- -a ,  set 

H -- ~ .  Now first let y E ( D  n a) - Ca. Set # = sup((Ca u H) O ?), so :t < ? .  

Let p be the successor of  :t in C, U H. Then set ga(?) -- max{gp(?),/~}. If  

? E(Ca U {a}) N D set ga(?) -- 0. It is easy to see that ga satisfies (i)-(iii). 

For y E D  we now define fr : x - Y ~ Y bY fr(a) -- ga(Y). By (iii) we get 

(1) Let ?, 2 E D ,  ? ~ Ca. Then fr(a) < fa(a) for all :t < a < to. 
We now show 
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(2) Set A = { y E D  I~  is not a y-decomposition of U}. Then A is not 
stationary in K. 

Pp.oor. By definition of  A there is a regressive function h : A ~ x such that 

X 7 = { a ~ x - 7  ] frta) < h(y)}E U for y ~ A .  

Assume that A were stationary. Define g :  A --- x such that g (y)E  C r - h(y). 

Then by Fodor g is constant on some stationary E c_ A. But then we have 

(,) Let 7, 2 E E,  7 < 2. Then y E Ca. 

To see this choose a ~ X  r N X~( E U). Then 

g ( y ) ~ ( C r  - g , (y ) )  ¢q (Ca - ga(2)). 

So y ~ Ca follows from (ii). But (,) contradicts the definition of  a [2,- -sequence. 

qed (2) 

Now choose some club C _ x such that C N A = ~ and let y be a limit 

point of  C such that cf(y) = z. Then sup C~ = ? since r > to. Let B _C C N Cr 

be club in y and otp(B) = ~. Set X = x - y and for 6 ~ B  set f6 =f6  r X. Then 

(fd I 6 ~ B )  satisfies the condition (b) in Lemma 1.2. Hence U is (to, T)- 

regular, qed 

§2. El-l~rineiples 

In this section we introduce the combinatorial principles we need for our 
results. 

We start with some definitions and notations. Set 

Se = {s = (v,,  a , )  ] lim(v~) and a, c_ J~, where toq = v~}. 

For s E 5e set 

Js = ( J~, a ), where  a = a,, torl = vs. 

Let hs be the canonical ZrSkolem function o f  J, .  If~r, s ~ 5e we write f :  g = , s  

for f :  Js ~z,  Js. The notation f ~  s denotes that f :  8=*s for some g. Set 

F = { f l f ~ s  for some s ~ Se}. 

Now let s G S¢ and 2 < vs, lim(2). Then set s [ 2 = (2, a N d~), where a = as, 

to t /= ;t. 

For f :  ~r=~s set 
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;L(f) ---- sup(On f~ nag(f))  and f l ( f )  -- sup{fl _-< v~ I f r  fl = id r fl}. 

So if f ÷  id, f l ( f )  is the critical point  o f f .  
We now define some special elements of  F as follows. Let s E 6e and fl =< vs. 

Let 
X -- the Z~-Skolem hull off l  in J,. 

Let f :  M ~ X, where M is transitive. Then there is exactly one $ E Sf such that  

M = J~. We also have that f :  s ~ s. Set f(p~) -- f .  
We now define a sequence (C, [ s E ~ ) .  So let s E Se. For ~ < v~ set 

For r / <  vs set 

Then set 

Finally we set 

W,~ = W,~ = O n  n h'~(to x (,~}). 

7(t/) = 7s(r/) = sup{sup Wa 15 < r/}. 

I ,  = {r/_-< v, I v # < r/~,(#) < ~,(,7) < v,}. 

c~ = (y(r/) I ~ e / ,} .  

Note that  C, is uniformly definable in Js. Clearly, Cs c_ {7 < v, t lim(7)}, since 
Wa < z, v,. The next theorem contains the main properties of  the sequence 

{C, lseS% 

THEOREM 2.1. Let s E 6e. Then: 
(a) Cs c_ v, is closed in vs. 
(b) ;~ e C, --. c s ~  = ,~ n c , .  

(c) cf(v,)  > to --- sup  Q = v, .  

(d) Let a < v, such that 2(ft,., )) = vs. Set 

& = min{& > a I ~ primitive recursively closed}. 

Then otp C, _-< ~. 
(e) Let f :  g=,s. Then f :  (Js, Ct) -"r, (,Is, C,) and ( J ,  C~) is amenable. 

PROOF. (a) is obvious. 
(b) Let 2 E C , .  So 2 - -  7~(r/) for some r / e l , .  By basic properties of the 

canonical Zt-Skolem functions we get that W~ = W~ I~ for all 6 < r/ and 

l,  la = r/M I,. So 7,(f/) = 7,Ma(f/) for all ~/< r/. Hence C, la = 2 tq C,. 
(c) Set v = v, and Wa = W~. Let el(v) > to. We have to show that sup Cs = v. 

It suffices to show that Is # ~ and I, has no maximal element. So let 
f /E l ,  U {0}. We are looking for some r /El ,  such that r / >  ~/. Now set 
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-- min{O > f/I sup W 6 > 7(f/)}. Then sup W6 < v, since I w,I _-< co and 
cf(v) > co. But then by definition ~ + 1 ~I~. 

(d) Let G: [On] <°~ -~ On be the canonical primitive recursive bijection. Set 
a '  -- sup G"[a] <% Then we have 

On N rng(f(,,.~)) C U{ W~ [ ~ < a'}, 

hence I, C_ a '  and otp C, < a'. 

(c) By the uniform definability of  (C, [ s E 5~) we get by (b) that { J,, C, ) is 
amenable and that f(C,l~) = C, im) for all 2 such that co~ < vs. So it suffices to 
show that F"C, c_ C,. So let 2 E Cs, say,~ = 7t(f/), f/~Ia. Set ~/= f(f/). We show 
that r /EI ,  and f(2) = 2. Set 2 = f(,~). Since f i s  Z~-elementary the following 
II~-statement holds in J,: 

(1) V J < q  Vi~co((i ,J)~domh~--*h,(i ,J)<A).  
B u t f r  Jtli is an elementary map  of Jsl~ into J,l~- Hence 

(2) Vp < 2 3 i 3 ~ < q ((i, ~) ~ d o m  h,i ~ and h,l~(i, ~) > p ) .  
By (1) wc can replace h m by h, in (2). So r/~I~ and 2 = 7,(t/). qed 

We now formulate the first crucial combinatorical principle. 

DEFINITION. Let ~: > co bc regular. Then ~ denotes the following com- 
binatorical principle. 

There arc ( s a l a  __< ~c), (C~ [vES,~), (Av [vES,~) and Ga : {vES,~ I a~Av} ~ 
S~ for a < r such that the following properties holds: 

(E0) (a) S, _c a + is closed in a + for a _-< ~:. 
(b) S~ is unbounded in ~:+. 
(c) sup Sa <~c for a < r .  
(d) Av _ ~c is club in Ic for v ~ S~. 

(E 1) For a _-< 1c, v E S~, we have 
(a) C~ _ S~ n v is closed in v. 
(b) AEC,-~C~ =2 n C,. 
(c)  c f (v )  > co --- s u p  C,  = v .  

(d) otp C~ < a. 

(E2) Let v, z ES~, v < z. Then there is some r / <  x such that G,(v) < G~(z) 
for all aE(A~ n AO - ~l: 
(b) Let vESt,  a~Av. Set q = G,(v) and 

a. = sup{a, q u (v} l otp(q n a.) 

Then Ga maps Cv n A order preservingly onto C~. 
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So this principle asserts the existence of  a E!~-sequence which projects to 

partial El~-sequences. It may be helpful for the reader to draw a picture. 

Later we shall show that I ~  holds in K for all regular x > to. We think that it 

is convenient to divide the proof of this into two parts. We now present the 

first part which can be stated in a general way without mentioning the special 

inner model K. For this we introduce the following rather technical definition. 

Let .9° and ( C, I s be as above. 

DEFINITION. Let K > to be regular. Then (B)~ denotes the following 

principle. 

There are S __. x + and (s, IRES} such that s , E ~  and the following pro- 

perties hold. 

(B0) Let v E S, s = s,. Then there is some a > to such that l~ ~ v = a + and 

f~o.o = id. 
Set a = a ,  and S , =  { y E S  l a =a , } .  

(B 1) (a) S, __. a + is closed for a < x. 

(b) S~ is unbounded in x+. 

(c) s u p S . < x f o r  a < x .  
(B2) Let yES , ,  s=sv ,  2~C, ,  f=f(o.,,a). Let f : s=*s  14 and set r / =  

sup{p < vs [f(p) <_ v}. Then r /ES,  and ~ = s~. 

(B3) Let v E S~, s = s,, f =  fc,.o. Assume that rng( f )  ~ x = a and let f :  ~ =, 

s, P = f -  ~"v. Then P ES .  and ~r = so. 
(B4) Let v, f ,  a, ~,, ~ be as in (B3). Further let z ES~ N v a n d f ( t )  = z. Then 

t ~S~, s~ ~Js and f(s,)  = sT. 

LEMMA 2.2. Let 
holds. 

x > to be regular and assume that (B)~ holds. Then EI~ + 

PROOF. Let (B)~ be given by S, Sa, s~. We have to define the different 

components of  I N .  For a < x we take the same S,. So (E0)(a), Co), (c) are 

satisfied. We now define the C,'s. So let v ES~ and s - - s , .  Let 2 E C, and 

f=f~o~l~),f: ~ s  12. Then set 

2 (,) = sup{p _-< v~ If(p)  -_< v}. 

Using this notation we set 

c ,  = {2,,, 12 c ,} .  

We have to show that (El) is satisfied. So let 2 EC, a n d f  be as above. By 
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(B2) we know that 2 (v) is the cardinal successor of a in Js. Since f(a)  -- a we get 

that f r  2 c° -- id t 2 ~. Hence 

2 (~) -- rng( f )  n v = n v .  

Since v is regular in Js it follows that 2 (° < v. We also get that C, is dosed  in v 
since the sequence (2 ~v) 12 c,) is continuous. Now we use the fact that 
f(,,,,) = ida. Hence by 2. l(d) otp(C,) < a, since a is primitive recursively closed. 

Further we get 
sup C, -- v, --- sup C~ = v .  

A similar argument yields that cf(vs)= cf(v). We still have to show that 
(E1)(b) is satisfied. So let ~/E C~. Then r/-- 2 tv) for some 2 ~ C,, s -- s,. Further 

let f=ft**lx). Then (B2) says that f : s ,~ , s  12. Set J = s , .  By Lemma 2.1 
we know that C,l~ -- Cs n 2 and f"C~ -- C, n 2. But then u s i n g f t  t / =  id ~ r/it 
is easy to see that ~t~)_._~[tv) whenever 2 E C s  and J[ = f ( 2 ) .  This implies 

that Cv n t / =  C,. 
We now define (A, [ v E S~). So let v E S~ and set s -- s,, f ,  -- f(**). We set 

A, = {a < x I x E nag f~, x n nag f ,  = a, f~ is elementary}. 

Obviously, A, is club in x. To define G~ we apply (B3). So let v~S~, aEA,, 
and set s =s,, f=fc,.,~. We then set G,(v)=f-l"v. By (a3) we know that 
G,(v)ES,. We have to show that (E2)(a) holds. So let v, T ES~, v < z and 

set s = s~. Since ft~., = id, there is some r / <  r such that v ~nagf t~)  for 

all aEA, - r l .  Now let a E A , - r / ,  f=f~ ,~)  and f ( P ) = v .  Set ~=s¢, 
s'  -- s,, f - -  f I Js. Then (B4) implies that .f: J ~ s'. Since x O nag f - -  a, 
f t a = i d t  a and f~.,,o= ids, it is easy to see that f=f(~,,3.  Hence i ,--  
G.(v) < 

Finally we have to show (E2)(b). So let vES~, aEAv, rl = G,(v), s--s, ,  
= s~, f =  f(,~). Hence f :  $ ~ s .  Since f t  a = a and otp Cs < a we know by 

Theorem 2. l(e) that f"Cs is an initial segment of  C,. Since f i s  elementary we 
have f (o tp  C~) = otp C,. So it suffices to show the following statement: 

~ . e G ,  2 = f(2)--" 2(° = f(2t")). 

Since then by the argument used for (E2)(a) it follows that 2(~) = G, (2t')), 

since 2~")~So N ~/. Nowf(h~la(a)) = hm(x)  and ~/= f-~"v. Hence 2 ~') = f(2(~)). 
qed 

For inaccessible x El~ will not be sufficient for our results. So we state here 
some additional information contained in the proof  of  the last lemma. 
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].,EMMA 2.3. 

above. Then we 
There are n'~ : 

properties: 
(1) rt~ r a = id 

(2) Let r ES~ 

Let the i~+-sequence be constructed from (B)~ as in the proof 
have: 
J~-'z, J, for v~S~, aEAv, i, = G~(v), ~ = s~, s = sv with the 

r ,~, n ~ ( , ~ )  = x .  

f~ v,  r = n~ ( t ) ,  s '  = sT. T h e n  rt2 = rc~ t ,Is,. 

PROOF. For v ~S~, aEAv, s = sv we set n~ = f ~ ) .  The properties (1), (2) 

were implicitly proved above, qed 

We now introduce for arbitrary cardinals x > to a similar principle El~ +. We 

shall only use this principle for singular x. 

DEFINITION. Let x > to be a cardinal. Then I ~  + denotes the following 

principle: 

There are ( s ~ l a <  x), ( C, I vES~), (A, [ v~S~),  
G~" {v ~S~ I a ~ A , } - - S ~  with the properties: 

(E0)(a) (b) as earlier. 

(C) a < r - - ~ s u p  S ~ <  a + 

(d) Let v ES~. Then there is some p < x such that A~ A ~ + is club in 3. + 

for all p ___<4 < x .  

(El)  and (E2) (a) as earlier. 

(E2)(b) Let vES t ,  aEAv. Set r /=  G~(v) and 

2 = sup{2 EC~ U {v} [ otp(C~ A 4) < a}. 

Then Ga maps C, f3 A order preservingly onto a final segment of C~. 

The weakening of(E2)(b) is motivated by the fact that we can only prove this 

version in suitable inner models. We now formulate an analogue to (B)~. 

DEFINITION. Let X > to be a cardinal. Then (13)~ denotes the following 

principle: 

There are S___ x + and (s, I v ~ S )  such that s ,6Ae  and the following 

properties hold: 

(1~0) Let v E S and s = &. Then there is a > to such that Js ~ v = a + and 

f(a~) = id,. Moreover, if a = x, then J~ ~ "H~ is a set and ~'2 < x 

2 ~ = 2 + ' .  

Set a = or, and S .  = {v ~ S  [ a --- av}. 
(1~ l)(a) S~ c_ a + is closed in a + 

(b) S~ is unbounded in x +. 

(c) s u p S ~ < a  + f o r a < x .  
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(B2) There is ( ~, I v E S) with the properties: 

Let v ~ S ,  s --s~, a = a,. Then 

(a) ~ _-< v,; c f (v)>  to ~ ,  <vs.  

(b) Let 2 ~ C,, 2 > ~,, f = fc~ ta), f :  ~ =* s I 4. Set 

t / =  sup( ~ _-< vs I f (~)  < v }. 

Then r /~S , ,  S = s ,  andf (~ , )  = ~.  
(133) There is (~, I v ~S~),  ~, < x, such that the following property holds: 

Let v ~ S~, s = s~, 8, < a < x, a no cardinal, f = f~,.,), f :  s =* s, a = 

# ( f ) .  Then a < vs and S = s, for the unique z such that Js ~ T = a +. In 

addition, f(~,) < ~.  Moreover we have that 8, =< 8, for t/, v as in (B2) 

with a = x. 
(B4) Let v , f ,  a, .¢ be as in (B3). Assume that T ~ S~ n v and z E rag(f) .  Then 

s,~rng(f). 

E l i Z A  2.4. Let x > to be a cardinal and assume that (B)~ holds. Then 

12, ++ holds. 

PROOF. Let (I~)~ be given by S, S~, s,, ~, 8~. We have to define the various 

components of Ul~ +. For a < x we take the same S,, which have the right 

properties by (B I). We now define C,. So let v E S,, s = s,. First we set: 

For 2 ~ C set 

Then (I)2) yields that 

For 2 ~ C, we set 

Using this notation we define 

C = q - ( ~ , +  l). 

2 ~ C -" x ,~  n v is transitive. 

Now let 2 EC~, p = 2('), f = f~a.,m. S ince f (~ )  = ~, we havef"Cp = C, N 2. So 

(El) follows as in the proof of  Lemma 2.2. Now let v ES~, s = s,, f~-=-f~a.,). 

We set 
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.4, = (a < x I a ffi fl(f~), a no cardinal and 

( f ,  is cofinal or otp(Cs C3 rng f~) >_- a)}. 

We shall set A, = . 4 , -  ~, for some ~, < x such that J, _-< J,. The exact 
definition of  ~, will be given later. But we can already show that (E0)(d) 
holds. It suffices to show that if a is sufficiently large and fray) is not co final, 

then there is some f l < a  + such that 2(ftp~))>2(fto~)). Let H = H ~ , .  

So H E rng ftK~) by (1)0). Hence assume that H E nag fto~) and f~ is not cofinal. 
Then 

X =  {(i, ~) [ i ~ t o ,  ~ < a ,  (i, ~) ~ d o m  h, } ~ H .  

So by (1)0) there is some fl < a  + such that X Erngfpa) .  But then 2 = 
;t (fro.,))~ rng ftp.,) since 2 is the smallest ordinal in J, such that X C_ dom h, I~. 

Now we define Go. So let v ~ S ~ ,  a ~ A , .  Let s = s t  and f = fa .~ ) , f  :~c=*s. 

Then set 
Go(v) = the unique z such that J~ ¢ ~ = a +. 

Then Go(v)~So  by (I)3). 
We now show (E2)(a). So let v, r E SK, v < r,  s = s,. Since ft~., = id, there is 

some r / < x  such that v E r n g f o ~ )  for all a ~ A , -  r/. Now let a ~ A , -  rl, 

f = fo.,), f :  J =* s. Then st ~ rng f by (1)4). So let f(J) = st. Set s '  = st and 
f = f t J j .  S o f : g ~ s ' .  Since s~J~  we have rngfto.~)~J~, J~ ~ }rngfto.,)} - -a .  
B u t f t  a implies that fto~o ffi f *  f~o.~). It follows easily that G~(v) < Go(r). 

We now turn to (E2)(b). But first we give the definition of  ~,. So let v E S~, 
s = st. We set ~, = max{J ,  J '}  where J~' is determined as follows. I fo tp  C, < x 
set J; = otp 6", + 1. Now let otp C, = x. Then D = C, - C, is some initial 
segment of  C,. Set J; = otp D + 1. This definition of  J, guarantees that for 
(E2)(b) we only have to show 

( . )  Let  a E A,,  rl = Go(v), s = s,, f = fro.,). Let 2 ~ C ,  and assume thatf(~)  = 
2. Then Go(2 ~')) ffi ~t~). 

Note that 2 ~ C~ by (1)3) (since f(¢,)  < ~,), hence 2 ~) is defined. 
First we introduce another notation. I f  h : s '=* s" we set d(h )  = s'. Now we 

prove (.). Set g = f ~ x ) ,  ~ = s,, g = f~,.~x~, p = J[t"). By definition and (1)2) we 

know that 

Jdig) ~ P ffi x +, Jd~) ~ P = a +, d(g)  -- s~, d(g)  ffi s~. 

Now set.fffi f t  J~la- So f :  $12 =, s 12 since f($ I ~) = s 12. Since f t  a -- id t  a 
we know that f*g=fto. , la> and g- t*f .g=f t , .d t~)>.  But the last equation 
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already gives that Ga(p) = P since we get d(fta,d(g)) ) = d(g)  and we know that 
d(g)  = sp and Jdts) ~ P = a +. Note that a E A p b y  our definition ofgpand the last 
sentence of (I)3). qed 

The following absoluteness property of Ek has many important applications: 

(,) Let W be an inner model and r > to some cardinal such that r+ = 
(r  +) w. Then if Ek holds in W, it holds in V, too. 

This property is also true for ~+,  but not for E!~ + +, since successor cardinals 
below r may not be the same in W and V. So we introduce another variation. 

DEFINITION. Let K > to be a cardinal. 
(a) Let A _ {a < r ] lim(a)}. 

Then [3~ + +(.4) denotes the variation of EX + + which results if we replace 
(E0)(d) by the following property: 

Let v ~ S~. Then there is some p < K such 
that A, n t l  is club in t/for all t/CA - p. 

(b) Let r be singular. Then ~ denotes the following principle: 
There is A __ r such that EI~ + (A) holds and A has the following 

properties: 
Let (~6 I g < P) be the monotone enumeration of A. Then p < r and 

(i) r > r6 > sup{tee [ ~ < J} for all J < p ,  
(ii) (cf(K~) I J < p) is weakly monotone, 

(iii) ~ = sup{x6 [J <p}.  
Note that for singular to, I~ + follows from ~ + 

Clearly, the requirements for .4 in (b) are motivated by our specific appli- 
cations. These requirements are just those appearing in the assumption of 
Lemma 1.3. Some of them are actually redundant in the definition ofEl~. 

Now [ ~  + (A) clearly satisfies (.). But this is still not the case for E3~ if 1¢ is 
singular. But a weaker version of (*) holds which will be sufficient for us. 

§3. []-principles in K 

In this section we show that [ ~  holds in K for all cardinals ~ > co. This will 
use the fine structure of the core model. Our main reference for this material 
will be [4]. But the basic properties will be used without explicit reference. 

We only consider standard structures N = jA. We do not distinguish the 
structure ( J~, ~ ,  A N £~) and J~. For N = J~ and ~ _-< a we set N I ~ = j A. 
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Concerning general fine structure we use the same notation as in [4]. But we 
need a slight strengthening of  Lemma 4.12 in [4]. For this we introduce a 
definition. 

DEFINITION. Set M,  N to be transitive, rc : M--- N. Then n : M ~ N 
denotes that 

(a )  ~ : M--*r.0 N and 
(b) for cofinally many ~ C O n  N M a n d  all Y l-formulas ~ we have M ~ A(~) 

i f fN ~ ~n(~)) .  

The following strengthening of Lemma 4.12 in [4] can be proved exactly as 
that lemma. So we omit  the proof. 

LEMMA 3.1. Let N be acceptable, 2fl transitive and n :2 f l - - - cN  p. 

Then there are unique M,  p such that M is transitive, M is p-sound and 

37I = M  p. 

In distinction to [4] we call every Ja a premouse, too. This seems to be a 
useful convention. The definitions for premice are extended in the obvious 
way. Especially, every Ja is a mouse. I f N  = J~ is a premouse and N ÷ J~ we say 
that  N is nontrivial. For premice N -- J~ we also set 

~ U ( U  N N) i f N i s  nontrivial 
at(N) / 

tcoa otherwise 

and lp(N) = 
We also extend the natural well ordering of  the core mice (see [4], Definition 

15.7) to the class of  all mice as follows: 
Let M, N be mice. Then M < N iff M,  N have comparable mouse iterates 

M' ,  N '  with M '  E N'  or (core(M) ffi core(N) and at(M) < at(N)). Formally, we 

define the core model  by 

K = I,.J{ l p ( g )  I M a mouse} 

and for v E On we set 

Kv -- I,.J { lp(M) I M a mouse, On N M < co v }. 

We shall need the following fact. 

Lr~MMA 3.2. Let N be a mouse at x, n = n(N),  and N = N n. Let ~ C s ,  

q E [ ~ ]  <'°, P --- Ps -- x. Set W -- hs(q U p)  and I;F = hs(q t.J p U {~}). 
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Then W N ~ = gr n ~ and sup W = sup g/. 

PROOF. Let M b e  the unique mouse at ~ such that Nis  a mouse iterate of  M 

and set 34" -- M n. So there is an iteration map zt : j~r-~ N. Note that zt(q) -- q 

and p ~ rng  zt, say 7 t (p )=  p. Now let tr: Q-~ h~t(q U p), Q transitive, and let 

tr(~) = ~ = at(J~). So a :  M-~z,/~t and W -- rng(Tt o t7). Let ~t: ~ ~z,  Q be the 

1 - i t e r a t i o n .  Then there is some ~: Q -'z, N such that 7t o a = t~ o ~t and t~(~) = 

~. Then g,' = rag ~ since Q -- he(rag(g) u (~}). Hence the claim follows since 
~t r ~ = id r ~ and ~t is cofinal, qed 

We also need an additional lemma about the fine structure of  mice. 

L~MMA 3.3. Let N be a mouse, M transitive and 7t : ~1 ~ o Nm. Then there 

is a unique m-sound iterable premouse M such that .(f  = g m .  Moreover, i f  

m > n(N) then M is a core mouse and n(M) = n(N). 

PROOF. We do induction on m. For m < n (N) this is clear using soundness 

above the critical point (see [4], Lemma 9.7), Lemma 3.1 and standard 

arguments. Note that for m = 0 the fact that 7t is a G- embedding is sufficient to 

get that M is a premouse. Now let m = n(N) + 1. This is the critical case. Set 

n = n(N). We may assume that N is a core mouse since N n +~ = core(N) n + ~. 

Set Q = N ~, p = p~+ ~. By Lemma 3.1 there is some transitive Q and some 

p, {~, p-sound, such that A~r = QP. Let ~t : Q ~z,  Q, Ft(p) -- p, be the canonical 

extension of  7t. By induction hypothesis there is some iterable premouse M 

such that O = M~. The embedding ~t shows that M is a mouse and n (M) = n. 

Since {~ is p-sound it suffices to show that p is the standard parameter of  0 .  

The usual argument using ~t shows tha tp  is the <. - leas t  parameter q such that 

ho(pQ U q)  = 0.. But then it is known that p = p~+ ~ U CM. So we have to show 
that CM -- O .  Assume that CM # ~ .  We shall derive a contradiction. Since 7t 
is E~-preserving for certain parameters, Ft is H2-preserving for certain para- 
meters. Especially we get 

(*) Q ~ ¢ ( p ) ~ Q  ~ ~ p )  (~ H2-formula). 

We apply this to the statements in Lemma 3.2. So for ~ E ~"Cu,  r = p - at(N) 

w e  get 

V q ~ [ ¢ ]  <~' hQ(q U r U {~}) n ~'C hQ(q U r). 

This eventually yields that ~ = m i n ~ " C M  and q = p - { ~ }  satisfy 

hQ(pQ U q) C_ ~. But (.) also implies that ~is a cardinal in Q. So r defines a new 

E~-subset of  top e in Q. This is a contradiction since r < .  p and p is the standard 
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parameter of  Q. This ends the proof  for m = n(N) + 1. But the rest of  the 

induction is clear by the m-soundness of  core mice. qed 

Later we shall also use the fact that if  in the lemma above m -- n(N),  then M 

will be a mouse if we only know that M is critical. 

After these preliminaries we now come to the main part of  this section. Set 

-- {v [ v primitive recursively closed, v no cardinal in K}. 

For v E ~q set 

N(v)  -- the < -least mouse N such that at(N) >_- v and v is no Eo~-cardinal in N. 

N(v)  is called the minimal collapsing mouse for v. 

LEMMA 3.4. Let v ~ and N = N(v). Then N is uniquely characterized by 

the following three properties: 

(i) N is a mouse, at(N) > v, v is no ~,o~-cardinal in N.  

(ii) v is a cardinal in N.  

(iii) CN _C v. 

PROOF. First we show that N satisfies (i)-(iii). For (i) this is clear by 

definition. Let N = Jy,  at(N) = x. Now assume that v is no cardinal in N. Then 

v < x. L e t f ~ N  show that v is no cardinal in N. Letf~J~+~ - Jg. But then it is 

known that f ~ , o ~ ( J ~ )  (see [4], Corollary 11.10) and J~ is a mouse. This 

contradicts the minimality of  N. Now assume that Cs ~ v. Let g E C~ - v. So 

there is a mouse M at g such that N is a mouse iterate of  M. But p(g) n 

Eo,(N) _ M. So v is no Eo,-cardinal in M. This contradicts minimality again. 

The usual comparability argument shows that N is the only mouse satisfying 

(i)-(iii). qed 

We now define S _c ~q as follows. 

Let v E ~q. Then v ~ S iff the following three properties hold: 

(i) N(v)  ~ v = a + for some a > to. 

(ii) N(v) ~ Hv = Kv. 

(iii) H~ °'~ ~ V x 3 y ( x E  y and y is admissible). 

For v E S we set 

a,  = the unique a such that N(v) ~ v = a +, 

H(v)  = n ~  ~'). 

Further let 
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By simple absoluteness arguments we get 

REMARK3.5. Let vESa .  Then ( N ( ~ ) I ~ E S a N v )  is (uniformly) 

El-definable in H(v)  with the parameter  a. We now show 

LEMMA 3.6. Assume V = K.  Then 

(a) S~ _ ct +, S~ is closed in a +, 

(b) a no cardinal --, sup Sa < a +, 

(c) x > o9 a cardinal ~ sup S~ = x +. 

PROOF. (a) Obviously, S~ _ a +. Now let v < a + be a l imit  point  o f  S~. 

Set H = U(H(T)  I TES~ N v}. Clearly, v E ~ .  So let N = N(v).  It is easy to 

see that  we only have to show that  H = Hff. Actually, H C__ Hff is obvious and 

it suffices to show that  H~ n p(v) _ H.  So let a E N  be a bounded  subset of  

v. Let N = J~.  So a E JrV+ ~ - Jr v for some ~, < ft. Hence M = Jr v is a mouse 

and P~t < v for some n. But v is ~o,-regular in M.  Hence v E CM and v is a 

limit cardinal in M.  So there is some r E S ,  n v such that  M < N ( T ) .  This 

implies a E H.  

(b) Choose a mouse M such that  I M I < a +, at(M) > a and a is no cardinal 

in M.  Obviously, sup S~ < at(M). 

(c) I fK > to is a cardinal then (v < x + I Kv < KK*} _ SK. qed 

For v E ~ ,  N = N ( v ) ,  set n = n ( v ) = t h e  least n such that  v is no 

En + r cardinal in N; A (v) = A~,, p(v) = p~, fi[(v) = N ~. 

LEMMA 3.7. Let  v E S ,  a = av, f i  = N(v).  Then there is some p Eft[ n 

IOn] <°' such that f i  = hs(a U p). 

PROOF. Let m = n(N).  Obviously, n(v) = n > m.  First assume that  n = 

m.  Since N is m-sound we know that  v is a cardinal in f i  but no El-cardinal in 

N. Hence Ps ~ a since f i  ~ v = a +. We also know that  CN _ v. So N ~ v = a + 

implies that  Cs _ a + 1. So the claim follows from f i  = hs(ps  U PI~ U CN) (see 

[4], L e m m a  10.19). I f  n > m then N is a core mouse. So N is n + 1-sound and 

the claim follows easily, qed 

Now let v E S ,  a = av, f i  = N(v), N = N(v),  p =p(v ) ,  m = n(N) ,  n = n(v). 

By I_emma 3.7 we can define 

p = p(v)  = the < , - l eas t  p E f t  such that  f i  = hs(a U p). 

We set ~ = v, i f  v < p ,  and ~ = 0 otherwise. We need one addit ional  

parameter  r(v). I f n  > m,  we set r(v) = 1. So let n -- m and x = at(N) = at(N). 
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If  p N [v, x) -- ~ we set r(v) ffi 1. Otherwise, let ~ ffi max(p n [v, x)). If ~ is 

singular in Nwe set r(v) = 1, too. So let ~be regular in N. Note that in our case 

N is a core mouse and p t i P s -  a. For /t < a and m a x ( p ) < 2 - < p  set 
W~ = hsla({/~} U p), W~ ffi h sla({/t} u (p  - {~}). We also set W~ = W~ and 
w.f  

Now set I = {/~ < c~ I V/~ </~ sup I ~  < sup W~} and 

: f f i { l t E I l s u p W  ~ < s u p  W, or 3 2 ~  Wf, 3 7 < a W a r n C Z W a r } .  

We now show that [ ÷ ~ .  

PROOF. Assume that i - - ~ .  Set p ' = p - { ~ } .  We first show that 

hs(a u p') 3_ ~. For notational reasons assume that p is a limit ordinal. So let 

J < ~ .  Since J E h s ( a  U p) there are 7 < a  and r / < p  such that J E  W~. Since 

i = ~ there are/ t  E I  and 2 E Wu such that 2 > r/. Using i -- ~ again we get 

E l, Fr~ f~ ~ ___ W~. This shows hs(a U p') __. ~. Since ~ is regular in 29 there is 

some B such that B N a~29 and B is Zrdefinable in 29 with parameters from 

a U p ' .  Now let c r : l f l ~ h s ( a U p ' ) ,  29 transitive, and a ( p ) = p ' .  Then 
M' = ha(a  U p) and Mr = M r. for some mouse M. Clearly, M =< N. But B is 

Zrdefinable in M. Hence M -- N since N is a core mouse. So f/ '  = 29 and 

29 = hs(a U p). This contradicts the minimality o fp  since p < .  p. qed 

So we can define r(v) = min i.  Note that r(v) < o~. 

Finally, we set 
q(v) = p(v) U {a, 9, r(v)}, 

s~ = (p(v), a(v)),  where a(v) = (A(v) X {0}) U (q(v) X {1}). 

So s ffi s, E 6e, f°.,) = id, and 29 = J, (as sets). 

TI-I~.O~M 3.8. Assume V ffi K and let x > co be regular. Then ( sv I v E S f3 x + ) 

satisfies (B)~. 

PROOF. First note that the "S.-notation" above is the same as in the 

definition of (B)~. So (B0), (B 1) have already been shown. 

(B2) Let y E S , ,  s = s , ,  2 E C , ,  fffif~,,l~), f:s sl2 and ~/= 
sup{p v, I f p) v}. We have to show that r/ES~ and t ffi s~. Set 29 = 29(v), 

n = n(v), p = p(v), q = q(v), r = r(v). Recalling the definition of  Cs it is easy 
to see that 

(1) q E r n g  f ,  f (a)  = a , f ( r )  ffi r , f  : J~--" cJ ,  and f (~l)= v, i fv  < p .  
Let a, = (. , /× {0}) U (# × { l } ) , f ( p ) =  p, cop ffi v,, f l  = J~. 
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(2) h~(a U p) = ~I. 

PROOF. By definition of f we know that h~(o~ U q) = / f t .  But f :  J8 ~ o J s  
implies that # ~ha(a U/~), since q ~hs(a U p). qed (2) 

Clearly, f :  A]r---o ]Y. Hence by Lcmma 3.3 and the following remark there is 
an m-sound mouse M such that A? -- M n. We also have 

(3) n(M) = n(N), at(M) >_- ~/, ~/is a Z,-cardinal hut no Z~ + rcardinal  in M. 
We now show 

(4) p = the <*-least p '  such that ha(a U p') = Jr4. 

PROOF. Otherwise there is somep '  < .  p such thatp Eha(a U p'). But then 
p E hs(a u f (p ' ) )  and f (p ' )  < .  p. Contradiction. qed (4) 

(5) cM _ ,1. 

PROOF. If n > n(N) then Air is a core mouse, hence CM----0. So let 
n = n(N) and set k = at(N), k -- at(M), sof(k) -- k. First assume p n Iv, ~) -- 
O .  Then p n [~/, ~:) = 0 .  But then by known properties of mice (4) implies 
that CM _C ~/. So let p n [v, k) ÷ 0 .  For this case we introduced the additional 
parameter r(v). Let ~ = max(p n Iv, k)), f(~) = ~. We shall show that Cu -- 
0 .  If this were not the case then again (4) implics that ~ E CM, P~ -- k = p -- ~: 
and ~ is regular in AIr. But we know that 

~ ¢(p,  r) iff iV ~ ¢(p,  r) (¢ Z,-formula). 

So by definition of r 

sup h ~ ( { r }  U ( p  -- {~})) < sup hM({r} U p) 

or 3 2 E h a ( { r }  U ( p -  {~))) 3?  < ~  

hMl~.({)' } U p)i"I ~ ~:hb/l~.({7 } U (iI~ -- { ~'})). 

But by Lemma 3.2 this shows that ~ ~ CM. 

Putting all this together we have already shown that t /ES,  M = N(~/) and 
37/= ]~(~/). Using the fact that f :  J~ ~ o  Js it is easy to check that 

(6) 

Hence by (4) we also know that p -- p(r/). 

(7) r = r(t/). 

PROOF. We only have to treat the case where r(v) has been defined in a 
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nontrivial way. But since 2 ~Cs we have hs({r} U p)c_ Since r E l  we 

can replace r by any # _< r. Hence we have for all/z < r 

33" ~ ¢(/z, p) i f fN  ~ ¢(#, p)  (¢ Z~-formula). 

This implies the claim. qed (7) 

Putting all this together we have J = s¢. qed (B2) 

The proof of  (B3) is almost a literal translation of the arguments above. 

Actually, it is a little bit simpler since we have a full Z~-embedding. So we leave 

this to the reader. 

(B4) Let f be given, f ( t ) =  r, z ~S~ M v. So by Remark 3.5 N ( z ) ~ r n g f .  
Let f (M)  = N(z). So f t  M:  N ~r., N(z) and f(a)  = r .  It follows easily that 

t ~S~, M = N( t )  and f (s0  = s~. qed 

Now we turn to the principle (I~)~. In general, this principle is no longer true 

in K for all cardinals x < co. For example, the results of  the next section show 

that (I~)~ fails in K if x is measurable in an inner model. In L,  however, (fi)~ is 

true for all cardinals x > co. For our application we only have to consider 

singular cardinals x. So let x be a singular cardinal in K. Then we set 

= IN(v)  r i s  singular}. 

Obviously, S* is a nonempty final segment of S~. A standard argument 

shows that K,:EN(v) for v ES*.  For a < r set 

if  ~ is no cardinal in K, 

otherwise. 

Then set S* = U{S* I a < x}. For v ~ S *  we now set 

p*(v)---- {r(v)} U p(v) 
and 

s* = (p(v), a*(v)), where a*(v) = (A(v) X {0}) U (p*(v) X {1}). 

So we only change the parameter. 

We need two technical lemmas. 
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LEMMA 3.9. Let v ~ S * ,  N = N ( v ) = J ~ ,  p = p ( v ) ,  o t = a ,  H = H ( v ) .  

Assume that n(v) = O, lim(//), v = at(N) and H q~N. Then there is some cJ ~ p 

such that a = I cJ I N. 

PROOF. The easy argument used in the proof of Lemma 6.5 in [5] shows 

that hu(v) = N, since H ~ N. So we have p __. v. Now assume that the claim is 

false. Then p = ~ ,  since p __. v - a. We derive a contradiction by showing that 

hN(a) tq v CC_ a. So let c~ 6 hN(a) A v. Hence there is a X0-formula 0 and a ? < a 

such that 

(*) $ = x i f f N ¢  3zO(z ,  7, x). 

Choose r / < f l  minimal such that j v ~ 3 z, x ¢(z, 7, x). Set M = j r .  A stan- 

dard argument shows that hM(V) = M.  So M i s  a mouse and n(M) = O. Let 2~1 

be transitive, 33"-~ hta(? + 1). Then A]'is a mouse and 37I < M. But the minimal 

choice of r/guarantees that core(M) = core(3/). So M is an iterate of 3~. Let 

7r : .~' ~ M b e  the iteration map. Then (.) implies that g ~ rng0r) N v c A~'. But 

On tq A]' < a by definition of ~r. Hence c~ < a. qed 

LEMMA 3.10. Let v ~ S*, v < at(N(v)) and cf(v) > to. Then H(v) ~ N(v). 

PROOF. Set H = H(v) and let Q = [-J{Mv I M~H,  Mmouse} where My 

denotes the v-th iterate of M. Let F = {E c_ v I E _ O for some club G __. v }. 

Then Q -- J~ for some $, Q is a countably complete premouse and H c_ Q. 

Choose 3 > c~ minimal such that ~ = J [  is critical. Then ~ is a mouse since 0 
is countably complete. Hence Q < N(v). But N(v) v~ O. since at (N(v)) > v. 
Hence H(v) E N(v). qed 

THEOREM 3.1 1. Assume V-~ K and let tc be a singular cardinal. Then 
(s* [ v ES*)  satisfies (B)~. 

PROOV. (1]0), (I] 1) are clear. From now on we use the "S*-notation'.  

(1)2) First we define (~v IRES*) .  So let y E S * ,  s* =s* ,  C = Cs., p =p(v) ,  

N = N(v)  etc. We distinguish two cases. 

Case 1. n -- 0 and (p is a successor ordinal or v < at(N) and H ~ N)). In 

this case cf(v)= to (especially, see Lemma 3.10). We set ~v--p. So (1)2) is 

trivially satisfied. 

Case 2. Case 1 is not satisfied. We set 
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= Imin{2 ~ C U {p} ]H~h~la(a U p)} 

~ [ m i n { 2 6 C  U {p} ]aEhs~a(a O p)} 

if n = 0 and H ~ N, 

otherwise. 

Note that in any case o~Ehsl¢,(a U p) because a is definable in H as the 
largest cardinal. Clearly, we have ~ < p if sup C = p. Hence (l]2)(a) is satis- 

fied. We now show (B2)(b). So let 2 E C, 2 > ~ v , f =  f~*l~),f: s=*s* I ;l and set 
~/= sup{6 < va ]f(6) < v}. First we show that ~/~S~ and g = s~*. This follows 
almost exactly as in the proof  of (B2) in Theorem 3.8. By definition of ~,, we 
have f (a)= a. Especially, ~, f given in a canonical way M, M such that 
~ t  = N(~/), M = N(~/). To show that t /E S ,  we distinguish several cases. If  

n > 0, then there is a canonical extension f _  f s u c h  that)?: M--,~., N(v). Then 
t /E  S, follows easily. So let n = 0. I f  H $ N, hence v = at(N), then by Lemma 
3.9 a is Z~ = definable in N with the parameter p because N has a Z, Skolem 
function. But then ~/ES~ follows exactly as in Theorem 3.8. Hence finally let 
n = 0 and H E N .  Then H E rng f by definition of  ~ .  So let f(/-/) = H.  It 
follows easily that H = H ~  and ~/~ S~. I f  a = r ,  then it is easy to see that 
N [ 2 ~ x is singular. Hence we have r /ES*.  

The only thing left to show isf(~,) = ~ .  This is obvious if n > 0 or H E N. So 
let n -- 0, H ~ N and v = at(N). We have to show that H(r / )~  N(r/). But in our 

case a is Y~rdefinable in N with the parameter p.  So f :  N(r l )~N  is E, with 
respect to the parameter a. It follows that p(a) n N( t / )~  N(r/) because H ~ N 
and a is the largest cardinal in N. qed (I)2) 

(1]3) First we define (6, I vES~*). So let v ES~*. We set 

~i~ = m i n { t J < x  ]K,~Ehsl¢.(6 O p)} and 6, - - m a x { ~ , r ( v ) +  1}. 

So the last claim in (1~3) is satisfied. Now let v ES* ,  s* = g ,  6~ < a < x, a no 

cardinal, f =  ft,.,.), f :  g =*s*, a = fl(f). Since x Erng  f ,  we have a < v~. So let 
J~ ~ z = a +. Let _~r = j~,  where a, = (.4 × {0}) U (</X { 1 }), p = vs and let 

f (p )  = p. Note that f ( r )  = r. 
Exactly as before we get 

(1) ha(a  U p)  = ~r. 
(2) There is an m-sound mouse M such that M" =Air, n(M)= n(N), 

at(M) > z. Moreover z is a E,- cardinal in M but no Z, + ~- cardinal in M.  
(3) p -- the <. - leas t  p' such that  ha(a U p') = _~.1. 

But we have to use one new argument to show 
(4) C,, _c z. 
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PROOF. As before we may assume that n = n(N). Moreover Cu - z C_ p. 

The parameter r shows again that ~, 6[ Cu iff(7) > v. But if  y E p and f(~,) < v, 

then If(~,) I N -- x. So in this casef(~,) is singular in N, hence 7 is singular in M 
and 7 ~ Cu. qed (4) 

It is easy to see that 

(5) 
We now show 

(6) r = r(r). 

PROOF. Since x is singular in N i t  is easy to see that r --- 1 iffr(z) --- 1. So let 

r ÷ 1, hence r has been defined in a nontrivial way. Since f t r + 1 = id r r + 1 

and f i s  Zt-elementary we immediately get that r = r(r).  qed (6) 

Putting all this together we have shown s = &. 

Finally, we show f (~0  =<_ ~,. It suffices to show: 
(7) Let 2 ~C~ and f(~) >--_ ~,. Then a, H(z)~hal~(a O p). 

PROOF. We know that K, E rng f .  So let f (K) = K~. Obviously,/(" = H~,  

where f(~c) = x. Actually, we know that /~  E h~,l~(a U p), since f(2)  > ~,. Set 

Y = l al < a. Clearly, a = (y +)u. Hence a, H(T) are definable in R with the 

parameter ),. Hence/~ ~ hala(ot U p) implies the claim, qed (1)3) 

(1)4) is obvious, qed 

Using the coveting theorem for K we get 

THEOREM 3.12. Assume -1 L ~. Let r. be a singular cardinal. Then 121, + 
holds. 

PROOF. By the covering theorem we know that x is singular in K 

and x + = ( x + )  x. Choose .4 _ C a r d N  x such that sup.4 = x ,  1.41 <to and 
co2 < min.4. Set A -- {(z+) x I T E.4}. By the coveting theorem A satisfies 

the conditions (i)-(iii) in the definition of 121~. By Lemma 2.4 and Theorem 

3.11 there is a 121~ + +-sequence in K. This sequence is a ~ + (A )- sequence 

in V. qed 

We also need the following facts about "partial measures" in K. 

L~MMA 3.13. Let v ~ S,, Set H = H(v), N = N(v). 

(a) Assume that U c p(x) ~ H and (H, U) ~ "U is normal", (H, U) is 

amenable, and U is countable complete. Then x ~ C~. 
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(b) Assume that xECN. Then there is some U c_ p(x) n H such that (H, U) 

is amenable and (H, U) ~ "U is normal". 
(c) Let Ui -_- p(x) n H (i = 0, 1) such that (H, U~) ~ "Ui is normal", (H, U~ ) 

is amenable and U~ is countabty complete. Then Uo = U1. 

PROOF. (a) Set .~:/= U{Jrv+l IJ(EN). So M=J  for some 0. By the 

assumptions we get 

(1) M is a premouse, A/__. H, ~r  6 H. 

Since v < (x+) ~ we know that U is not normal in L[U]. Hence there is some 

fl _->_ 0 such that p(~:) n Z,o(J~) ~Jp. Let fl be the least such and set M = J~. 

Such an M is a mouse since U is countably complete. A standard argument 

shows that 
(2) For all mice P E H we have P < M. 
Now let M~ be the l-mouse iteration of M. It suffices to show that M~ = N. 

We use Lemma 3.4. Since H ¢ V = K and since mice in the sense of H are 

really mice, we get by (2) that at(M0 > v. Obviously, v is no ~o,-cardinal 

in M, and CM, C v. Finally, we show that v is a cardinal in N. Again (2) 

yields that Mr, ¢ v < x ÷ since H ¢ v = x÷. Assume that v is no cardinal in 

M~. Then there is some r ___ x × s: such that r ~ M~ and r has order type v. 

But then r E M c_ H. This is a contradiction since H satisfies enough set theory 

and v ~ H. qed (a) 

(b) Let x E Cu. So N is the 1-mouse iteration of some mouse M = J~ at r .  

Now p(x) N H = p(x) n N = p(x) n M. Hence (H, U) ~ "U is normal". The 

same argument shows that (H, U) is amenable, qed (b) 

(c) follows from the proof of  (a). qed 

The proof of  the following remark is left to the reader. 

REMARK. Let vESt ,  N=N(v) ,  f l=~r (v ) ,  p=p(v ) .  Then: x ~ C u  iff 

n(N) = n(v), x E p ,  h~(x U (p - {x})) n (x, at(N)) = ~ and p(x) n N ___ 

h (x u ( p  - {x} ) ) .  

LEMMA 3.14. Let v~S~, cf(v)>¢o, x regular. Assume that there is no 
countably complete U such that (H(v), U) ~ "U is normal" and (H(v), U) is 
amenable. Then there is a club C c_ S~ n v such that for all 2 ~ C there is no 
countably complete U such that (H(2), U) ~ "U is normal" and (H(2), U) is 
amenable. 

PROOf. Set N -- N(v), H = H(v). First we show 
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(1) K~Cw. 

PROOF. Asume that 1¢ E C m  Then by Lemma 3.13(b) there is some U such 
that (H,  U) is amenable and (H,  U) ~ "Uis  normal". But then Uis countably 
complete since of(v) > to and cf(~¢) > to. This contradicts the assumption. 

qed (1) 

Now let (C~ I t /ES~) be the sequence which results from the proof  of 

Theorem 3.8 and Lemma 2.2. Set C = C~. Then ~ is club in v since of(v) > co. 

The proof  of 3.8 and 2.2 shows that: 
(2) There is a sequence (o'~ 12 ~ C) such that 

(i) a~ : N(2) ~ 0  N(v), a~ r 2 = id ~ 4, a~(p(2)) = p(v), 
(ii) 4, ~/~ ~,  A < r/--* rng a~ C rng a~, 

(iii) N(v) = U{rng ok ]4 ~ C } .  
Now by (1) lc ~ C~. Hence by (2) and the remark above there is some 7 < K 

such that K (~ C~t~ ~ for all 2 ~ C - 7. Hence by 3.13(a) C = C - 7 satisfies the 
claim, qed 

The next result is a strengthening of the well-known fact that assuming n L ~ 
we have (!¢+) K = !¢ + for any weakly compact r .  

L~MMA 3.15. Assume n L ~. Let r > tO be regular and (r+) K < K +. Then 

EI~- holds. 

PROOF. We may assume that x _-> to2 since [3~, holds. Hence by the cover- 
ing theorem for K we have cf((lc+)r) -- K. Let (Cv Iv~S~ ) be the natural 
I~-sequence in K which is given by Theorem 3.8 and Lemma 2.2. We 
shall show 

(.) There is no unbounded C _ S~ such that C N v = C, for all v ~ S~. 

It follows easily that El~- holds. To see this just choose some f :  ~c ~ S~ which 
is normal and unbounded.  For limit ordinals 2 < ic set D~ = f -  m,, C~). Then D~ 
is a EI~- -sequence. 

So it remains to prove (,). Assume that C is a counterexample. Then we 
know again by definition of  (Cv ]v E S~) that there is a commutat ive  system 
(o'~, 12 E C t3 v) of embeddings a~ : 2V(2) ~ N(v) such that a~ ~ 2 = id ~ 2 
and a~(p(2))  = p(v). Set z = (r+) K. Since cf(z) > to there is a transitive N a n d  
a~ : N(2) ~ N for 2 E C such that (N, a~ ) is the direct limit of  the system 
(a~).  An application of  Lemma 10.38 in [4] shows that N = N n, n = 

n(min C), for some mouse N. But we also know that hst~)(r U p(2)) = N(2) 
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forit E C. So we have hs(x  U p) = Nwherep  -- a~(p(it)). We also have z c_ N. 

Moreover, N ~ K  since N = N n for some mouse N. But then ~ is no cardinal in 

K which is a contradiction, qed 

~4. []-principles and ultratilters 

This section contains the main results of  this paper. We use our []-principles 

to get regularity of  ultra filters. 

THEOREM 4.1. Let x > to be a successor cardinal or a singular cardinal. 

Assume that l:l~ + holds. Then every uniform ultrajilter on x is regular. 

PROOF. If r is singular let I:~ be given by El~ + (A). In both cases let ! ~  be 

given by S~, C,, A,, G~. 
Now let Ube a uniform ultrafilter on x. We have to show that Uis regular. So 

if x is regular, then by Kanamori 's theorem we may assume that 

U ~_ {C __. x I Cclub in x}. 

If x is singular, then by Lemma 1.3 we may assume that 

U __. {C C x I C tq T club in T for all z CA }. 

So in both cases by (E0)(d) we have U ~_ {Av I v ~ S ~ } .  If  x is a successor 

cardinal we may also assume w.l.o.g, that sup S~ < a + for all a < x. To see this 

note that (E0)(a)(d) implies that this is satisfied for all a >_-2 if x = 2 +. But 

clearly we can assume that S, = ~ for a < it if x = it + 
After these preliminaries we can treat both cases together. So we only use the 

weaker version of  (E2)(b) which is also satisfied in the singular case. For a _< x 

set ,~a -- {v E I sup c, = v}. 

Ct~IM 1. There are functions g. : Sa--" On (a < x) such that: 

(i) g,(v) E Cv, 

(ii) v, z E,~,,  v < z,  v q~ C, --,(C, - g,(v)) 0 (C, - g,(~)) = ~ ,  

(iii) it, v ~ , ,  it ~ C, - -  ga(it ) < g,(v). 

PROOF. Let a < x and S, ÷ ~ .  By reeursion we define g ' :  ~¢, A (v + 1) 

On for v E S, which satisfy the conditions (i)-(iii). After that we can set g, = go 

where p = max S,. Note that max S, exists. The initial and successor steps of 

the recursion are obvious. So let v be a limit point of  S,. If  sup C, < v, hence 
el(v) -- to, let H be a monotone to-sequence of  successor points in S, such that 
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s u p H - - v  and m i n H > s u p C v .  Set H = O  if s u p C v = v .  Now let r/E 

(~, N v) -- (C U H). Set 

7 = sup((C u H) n v) and /z -- min((C U H) - (7 + 1)). 

Hence 7 < r / < # .  Then set g~(r/) = min{2 EC~ 12 > 7 and 2 > gJ'(r/)}. For 

r/E(C~ U {v})n ~ set gV(r/)= 0. Clearly, gV satisfies the conditions (i)-(iii). 

qed (Claim 1) 

Clearly, we may assume that A~ ___ {a < x ] lira(a)}. Now let v ~ .  Then by 

(E2)(b) we can define a map f~ : A~ ~ v by 

f ( a )  = min{p EC~ [ G~(p) > g~(G~(v)) }. 

CLAIM 2. Let 7 < x, lim(7). Then 

Yr = { v E S ~  [otp C~ = 7,f~ no v-decomposition of  U} 

is not stationary in x +. 

PROOF. There is a function h : Yr ~ x + ,  h ( v ) ~ C ,  such that 

Z,={c,~a~lf~teO<-_h(v)}~U f o r  a l l  v E  Y r . 

We shall show that (C~ - h(v))  O (CT - h(r)) = ~ for v, r E Yr, v ÷ z. It 

follows immediately that Yr is not stationary. So let v, r ~ Yr, v < r. Assume 

that 2 ~(C~ - h(v))  n (CT - h(z)). We shall derive a contradiction. Note that 

v ~ C, since otp C~ -- otp 6", = y. Set/t -- sup(C, n v), p = min(C~ - v). Since 
Zv o Z~ E U, we can apply (E2)(a) to find some a ~ Z ,  O Z~ such that G,(/~) < 

G~(v)< G,,(p). Set i, = G~,(v), t = G~(z). By (E2)(b) we get that i ,~Ct  and 

G, (2)E (C~ - g ,  (9)) n (C~ - g ,  (t)). This contradicts (ii) of  Claim 1. 

qed (Claim 2) 

For ~, < x, lim(7), now choose a club D r c__ t¢ + such that D r n Yr -- ~ .  Set 

D -- A{D r I Y < x, lira(7)}. Then D is club in x + and we have 
(1) Let v ~ S~ O D such that otp C, < x. Then f,  is a v-decomposition of  U. 

Now we shall show 

(2) Let co < p  < lc such that p is regular. Then U is (co, p)-regular. 

This is sufficient, since we can apply Lemma 1.1 if ~: is singular. 

So let p be as in (2). We shall apply Lemma 1.2. Choose some v ~S~ such that 

of(v) = p and v is a limit point of  D. So there is some B _C v such that 

(a) B club in v, B C_ D, otp B = p, 

(b) 2 E B  --- ;t is a limit point of  C,. 
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Set X = Av. For A E B define f~ : X ---, A by 

= l fAa) if a > otp Cx, 

if a < otp Ca. 

Clearly, ~ = f~ mod U. So ~ is a A-decomposition of  U since B _ D. But 
(E2)(b) and (iii) of Claim 1 show that f~ < f~ for all 4 , / t  ~ B ,  A </~. So 
( ~ I A E B  ) shows that U is (to, p)-regular, qed 

THEOREM 4.2. Assume 7 L u. Let x be a singular cardinal. Then every 

uniform ultrafilter on x is regular. 

PROOF. This follows immediately from Theorem 4.1 and Theorem 3.12. 

qed 

THEOREM 4.3. Let x > to be regular and assume (x+) x = x +. Moreover 

assume that x is not measurable in an inner model. Then every uniform 

ultrafilter on x is regular. 

PROOF. Let U be a uniform ultrafilter on x. We have to show that U is 
regular. So by Kanamori 's  theorem we may assume that U _ { C _ x I C club 
in x}. Let S,,  Cv, Av, G~ be the natural sequence giving 1:2, + in K. For v~S,~ 
define f~:A~---x by f~(a) = G,,(v). Let g :  x--, On be defined by g(a) = (or +)r. 
We distinguish two cases. 

Case 1. There is s o m e f < v g  such that f, < v f f o r  all v E S t .  
In this case we can argue exactly as in the proof  of  Theorem 5.1 if we replace 

A, by A~' = {aEA~ I f~(a) < f(a)} and Sa (a < x) by Sa f3 (f(a) + 1). 
Case 2. For all f < v g there is some v ~ S~ such that f_-< v f~- 
We now use Lemma 2.3. Hence by taking restrictions we get ~z~ : H(G~(v))--,~, 

H(v) for a ~ A v  such that 
(1) rc~ r a = id r a; hA(a) = x. 
(2) Let zES, ,  M v, r = n~(t). Then t = G~(z) and ~z2 = re2 tn(G,,(z)).  

Moreover, we know by results in §3 that 
(3) z ~ S ~  n v - - ,n ( z )  c_ n(v) .  

(4) v a limit point ofSa---,H(v) = U{H(z)  [ z~S~ n v}. 
(5) a >  to a cardinal in K-~Kst~ ~ C_ U{H(v)  IvES~}.  

So by the assumption in our case we get 
(6) Let f :  A - - V ,  A E U, such that f(a)EKgt~ ) for all a E A .  Then there is 

some v ES~ such that { a ~ A  I U. 
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For v ~S,~, aEAv, we set 

U~ = {X C_C_ a I XEH(Gv(a)) and a~lt~(X)} 

and 
Z, = {aEA,  [ (H(G,(a)), U~) is amenable}. 

(7) Let Z, E U. Then (H(v), U n H(v)) is amenable and (H(v), U n H(v)) 
"U n H(v) is normal". 

PROOF. By (6) there is some zES t ,  ~ > v, such that 

x :- e z ,  n ] e e V. 

We may assume that H(z) < K,~+. Set 

A = {aEA,  I v ~ r n g  7t~ and ~t'~:H(G,,(z))~°H(z)}. 

Then A is club in x. Hence Z = X n A ~ U. For a E Z  set U" = l t~(~) .  Then 
(H(v), U ~') is amenable and H(v) ¢ "U" is normal". Moreover, ~ is countably 

complete in H(G,, (z)) for all a E Z.  To see this let (X~ I i < to ) ~ H(G, (z)) such 
that XiE ~ .  Then a E  n{n~(x , )  I i < to}. Hence U" is countably complete in 
H(z). But H(z) < K,~+. So U ~ is countably complete in K. Applying 3.13(c) in K 
we get that U ~ = U p for all a, fl E Z. It follows easily that for a E Z every Y E U" 
countains a nonempty final segment of Z.  Hence U ~ = U n H(v) since Z ~ U. 

qed (7) 

(8) There is some z ~ S~ such that Zv ~ U for all v E S~ - z. 

PROOF. Assume not. Then by (7) for cofinally many vES~ (H(v), U n H(v)) 
is amenable and (H(v), U A H ( v ) ) ~  " U A H ( v )  is normal". But then 
(K~,, U n K~+) is amenable and (K~+, U n K~+) ~ "U  n K~+ is normal". A 
standard argument shows that U n K~+ is countably complete. So U n L [ U] is 
normal in L[U] by Lemma 16.11 in [4]. This contradicts our  assumptions. 

qed (8) 

Now choose z as in (8). So by (6) we can define recursively a sequence 
I < x> with the properties 

(9) (a) (~,(~) I ~ < x )  is normal, ~,(0) = z, ~,(~)ES~; 
(b) X~ = {aEAx~ ~ n A~t6+ ~)[ U~t6}EH(G~(~,(~ + 1)))} ~ U for all ~ < x. 

Now set ~, = sup{~,(~) [ ~ < x}. 
(10) There are some Y _ A~, Y ~  U, and a club C __ {?(t~) [ g < x} with the 

property: 
Let a ~  Y, ~/~(C n r n g ~  r) U {y}. 
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Then (H(G~(q)), U~) is not amenable. 

PROOF. By (6) we can choose a vES~, v >7, such that H(v) ~ K~+ and 
17 = {a CA, I3' E rag 7t~, U~ ~ H(G,(v))} E U. We distinguish two cases. 

Case A. There is some D E K  such that (H(7),D) is amenable, 
(H(7), D) ~ "D normal" and D is countably complete in K. 

Then there is a club C c {7(6) ] $ < r )  such that (H(q), D n H(rl)) is 
amenable for all q E C. Let p = rain C. Then set: 

Y = ( lc  - Z.) n 17 n { eA, IP Crag 

Hence Y ~ U .  Now let a ~ Y ,  r /E(CnragTtDU{y} .  Assume that 
(H(Ga(rl)), Ug) were amenable. By uniqueness (see Lemma 3.13(c)) we get 
7t~(Ug)=DnH(rl). But D OH(p) is amenable and n~(G~,(p))=p. So 
(H(G~(p)), Ugn G,(p)) is amenable. But U~ n G,(p)= U~. Hence aEZp 
which is a contradiction. 

Case B. Case A does not hold. 
So by Lemma 3.14 there is a club C _ r such that for all r/E C there is no 

D E K  such that (H(r/), D) is amenable. (H(q), D) ~ "D normal" and D is 
countably complete in K. Now set Y = 17. Let a ~  Y, q ~ (C  n rag 7t~) u {y}. 
Then (H(G~ (ri)), U~ ) cannot be amenable, since otherwise 7t~ (U~) would show 
that v ~ C. qed (10) 

Now let Y, C he as in (10). Set 

A = {aEA~ I C n rag 7t~ is an initial segment of C}. 

ThenA is club in r ,  hence X = Y n A ~ U. Let C 'be  the set of limit points of C 
in 7. For r/~ C* we can define f, : X-~ q by 

/ min{p ~ C  n ~/I U~H(Ga(q))} 

f~(a)--[min{p E C n rag 7t~ I U~H(Ga(7))} 

if~/Erag 7t~, 

otherwise. 

Obviously, f~ <fp for all ~/,p E C*, t / < p .  But (9) implies that f~ is an 
r/-decomposition of Ufor every ~/~ C*. So by Lemma 1.2 ( f~ I r/E C*) shows 
that U is regular, qed 

As a corollary to the proof we get: 

COROLLARY 4.4. Let r > to be regular and ( r . ) x  __ x+. Let U be a non- 
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regular ultrafilter on x such that U ~_ { C c_ x ] C club in x }. Then U tq L [ U] is 

normal  in L [ U]. 

Finally, we show: 

THEOREM 4.5. Assume 7 L ~. Let  x > to be a .cardinal and U a uniform 

ultrafilter on x.  Then U is (to, p)-regular for  all p < x.  

PROOF. By Theorems 4.2, 4.3 we only have to treat the case that xis regular 

and (x+) x < x +. But then 121~- holds by Lemma 3.15. Then the claim follows 

from Theorem 1.4. qed 

We finish this paper with a few remarks. The proofs show that for regular 

x < to, I:k ÷ holds if V =  L[A] for some A __. x. So it holds if x + is not 

inaccessible in K. This already shows that to get a nonregular ultrafilter on a 

successor cardinal you need the consistency of  an incaccessible cardinal. Using 

additional known ideas one can show that this is true for arbitrary regular 

cardinals. 
Moreover, slight variations of  our proofs give stronger results for filters. For 

example, if x > to is regular, then ~ implies that every x +-saturated filter ~" 

on x containing all club subsets of  x is regular. Here regularity for filters should 

be defined exactly as for ultrafilters, i.e. using sets of  ~ -measure  one. There is 

also a suitable version of Kanamori's thoerem for uniform x ÷-saturated filters 

on x. The situation is slightly different in Theorem 4.3 because the distinction 

of  the two cases uses the ultrafilter property. Moreover, Theorem 1.4 only 

holds for x-saturated uniform filters on x. But we have a different proof of  

Theorem 4.5 which does not use Theorem 1.4. Details concerning these 

remarks will appear in a later paper. 
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